Skip to main content

Advertisement

Log in

Elasticity of the Heart, Problems and Potentials

  • Cardiac Magnetic Resonance (E Nagel and V Puntmann, Section Editors)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

The biomechanical integrity of the human heart is critically important, with various diseases affecting the active or passive stiffness of the myocardium. Although manual palpation is an integral part of many diagnostic procedures and is of undisputed clinical value, its applicability is limited to superficial regions. Furthermore, it remains a qualitative not quantitative method. These limits, however, may be overcome with elastography, an exciting new imaging modality that enables noninvasive assessment of biomechanical properties deep inside the body. The general concept is based on the intertwined relationship between the local propagation properties of shear waves and the underlying, intrinsic mechanical shear parameters. Elasticity imaging already has demonstrated very promising results in breast cancer, liver fibrosis staging, and neurodegenerative diseases. However, its application to the cardiovascular system is rather novel, and its challenges include data acquisition and mechanical parameter reconstruction. This article discusses the requirements for performing quantitative elastography of the heart, as well as current developments and future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Verdier C. Rheological properties of living materials. From cells to tissues. J Theor Med. 2003;5(25).

  2. Lewa GJ. Elastic properties imaging by periodical displacement NMR measurements (EPMRI). Proc Ultrason Symp IEEE. 1994;2:691–4.

    Article  Google Scholar 

  3. Muthupillai R et al. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science. 1995;269:1854–7.

    Article  CAS  PubMed  Google Scholar 

  4. Rouviere O et al. MR elastography of the liver: preliminary results. Radiology. 2006;240:440–8. doi:10.1148/radiol.2402050606.

    Article  PubMed  Google Scholar 

  5. Huwart L et al. Magnetic resonance elastography for the noninvasive staging of liver fibrosis. Gastroenterology. 2008;135:32–40. doi:10.1053/j.gastro.2008.03.076.

    Article  PubMed  Google Scholar 

  6. McKnight AL et al. MR elastography of breast cancer: preliminary results. AJR Am J Roentgenol. 2002;178:1411–7.

    Article  PubMed  Google Scholar 

  7. Sinkus R et al. MR elastography of breast lesions: understanding the solid/liquid duality can improve the specificity of contrast-enhanced MR mammography. Magn Reson Med Off J Soc Magn Reson Med / Soc Magn Reson Med. 2007;58:1135–44. doi:10.1002/mrm.21404.

    Article  Google Scholar 

  8. Wuerfel J et al. MR-elastography reveals degradation of tissue integrity in multiple sclerosis. Neuroimage. 2010;49:2520–5. doi:10.1016/j.neuroimage.2009.06.018.

    Article  PubMed  Google Scholar 

  9. Schregel K et al. Demyelination reduces brain parenchymal stiffness quantified in vivo by magnetic resonance elastography. Proc Natl Acad Sci U S A. 2012;109:6650–5. doi:10.1073/pnas.1200151109.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Salameh N et al. Early detection of steatohepatitis in fatty rat liver by using MR elastography. Radiology. 2009;253:90–7. doi:10.1148/radiol.2523081817.

    Article  PubMed  Google Scholar 

  11. Fung Y C. Biomechanics: mechanical properties of living tissues. 2nd ed. Springer-Verlag; 1993.

  12. Rijnsburger AJ et al. Mammography benefit in the Canadian National Breast Screening Study-2: a model evaluation. Int J Cancer J Int Cancer. 2004;110:756–62. doi:10.1002/ijc.20143.

    CAS  Google Scholar 

  13. Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging. 1991;13:111–34.

    Article  CAS  PubMed  Google Scholar 

  14. Chenevert TL, Skovoroda AR, O'Donnell M, Emelianov SY. Elasticity reconstructive imaging by means of stimulated echo MRI. Magn Reson Med Off J Soc Magn Reson Med / Soc Magn Reson Med. 1998;39:482–90.

    Article  CAS  Google Scholar 

  15. Bercoff J, Tanter M, Fink M. Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control. 2004;51:396–409.

    Article  PubMed  Google Scholar 

  16. Sinkus R et al. High-resolution tensor MR elastography for breast tumour detection. Phys Med Biol. 2000;45:1649–64.

    Article  CAS  PubMed  Google Scholar 

  17. Bagley RL, Torvik PJ. A theoretical basis for the application of fractional calculus to viscoelasticity. J Rheol. 1983;27:201–10. doi:10.1122/1.549724.

    Article  CAS  Google Scholar 

  18. Holm S, Sinkus R. A unifying fractional wave equation for compressional and shear waves. J Acoust Soc Am. 2010;127:542–59. doi:10.1121/1.3268508.

    Article  PubMed  Google Scholar 

  19. McGarry MD et al. An octahedral shear strain-based measure of SNR for 3D MR elastography. Phys Med Biol. 2011;56:N153–64. doi:10.1088/0031-9155/56/13/N02.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Messas E, Pernot M, Couade M. Arterial wall elasticity: state of the art and future prospects. Diagn Interv Imaging. 2013;94:561–9. doi:10.1016/j.diii.2013.01.025.

    Article  CAS  PubMed  Google Scholar 

  21. Van Houten EE, Weaver JB, Miga MI, Kennedy FE, Paulsen KD. Elasticity reconstruction from experimental MR displacement data: initial experience with an overlapping subzone finite element inversion process. Med Phys. 2000;27:101–7.

    Article  PubMed  Google Scholar 

  22. Manduca A et al. Magnetic resonance elastography: non-invasive mapping of tissue elasticity. Med Image Anal. 2001;5:237–54.

    Article  CAS  PubMed  Google Scholar 

  23. Romano AJ, Abraham PB, Rossman PJ, Bucaro JA, Ehman RL. Determination and analysis of guided wave propagation using magnetic resonance elastography. Magn Reson Med Off J Soc Magn Reson Med / Soc Magn Reson Med. 2005;54:893–900. doi:10.1002/mrm.20607.

    Article  CAS  Google Scholar 

  24. Sinkus R et al. Viscoelastic shear properties of in vivo breast lesions measured by MR elastography. Magn Reson Imaging. 2005;23:159–65. doi:10.1016/j.mri.2004.11.060.

    Article  PubMed  Google Scholar 

  25. Klatt D, Hamhaber U, Asbach P, Braun J, Sack I. Noninvasive assessment of the rheological behavior of human organs using multifrequency MR elastography: a study of brain and liver viscoelasticity. Phys Med Biol. 2007;52:7281–94. doi:10.1088/0031-9155/52/24/006.

    Article  PubMed  Google Scholar 

  26. Van Houten EE, Miga MI, Weaver JB, Kennedy FE, Paulsen KD. Three-dimensional subzone-based reconstruction algorithm for MR elastography. Magn Reson Med Off J Soc Magn Reson Med / Soc Magn Reson Med. 2001;45:827–37. doi:10.1002/mrm.1111.

    Article  Google Scholar 

  27. Sinkus R, Jean-Luc D, Vilgrain V, Van Beers BE. Elasticity imaging via MRI: basics, overcoming the waveguide limit, and clinical liver results. Curr Med Imaging Rev. 2012;8:8.

    Article  Google Scholar 

  28. Davies JI, Struthers AD. Pulse wave analysis and pulse wave velocity: a critical review of their strengths and weaknesses. J Hypertens. 2003;21:463–72. doi:10.1097/01.hjh.0000052468.40108.43.

    Article  CAS  PubMed  Google Scholar 

  29. Bieri O, Maderwald S, Ladd ME, Scheffler K. Balanced alternating steady-state elastography. Magn Reson Med Off J Soc Magn Reson Med / Soc Magn Reson Med. 2006;55:233–41. doi:10.1002/mrm.20812.

    Article  CAS  Google Scholar 

  30. Maderwald S, Uffmann K, Galban CJ, de Greiff A, Ladd ME. Accelerating MR elastography: a multiecho phase-contrast gradient-echo sequence. J Magn Reson Imaging JMRI. 2006;23:774–80. doi:10.1002/jmri.20570.

    Article  Google Scholar 

  31. Rump J, Klatt D, Braun J, Warmuth C, Sack I. Fractional encoding of harmonic motions in MR elastography. Magn Reson Med Off J Soc Magn Reson Med / Soc Magn Reson Med. 2007;57:388–95. doi:10.1002/mrm.21152.

    Article  Google Scholar 

  32. Elgeti T et al. Cardiac magnetic resonance elastography. Initial results. Invest Radiol. 2008;43:762–72. doi:10.1097/RLI.0b013e3181822085.

    Article  PubMed  Google Scholar 

  33. Robert B, Sinkus R, Gennisson J-L, Fink, M. In: Int Soc Magn Reson Med; 1793.

  34. Herzka DA, Kotys MS, Sinkus R, Pettigrew RI, Gharib AM. Magnetic resonance elastography in the liver at 3 Tesla using a second harmonic approach. Magn Reson Med Off J Soc Magn Reson Med / Soc Magn Reson Med. 2009;62:284–91. doi:10.1002/mrm.21956.

    Article  CAS  Google Scholar 

  35. Garteiser P et al. Rapid acquisition of multifrequency, multislice and multidirectional MR elastography data with a fractionally encoded gradient echo sequence. NMR Biomed. 2013;26:1326–35. doi:10.1002/nbm.2958.

    Article  PubMed  Google Scholar 

  36. Zile MR, Baicu CF, Gaasch WH. Diastolic heart failure–abnormalities in active relaxation and passive stiffness of the left ventricle. N Engl J Med. 2004;350:1953–9. doi:10.1056/NEJMoa032566.

    Article  CAS  PubMed  Google Scholar 

  37. Kolipaka A et al. Evaluation of a rapid, multiphase MRE sequence in a heart-simulating phantom. Magn Reson Med Off J Soc Magn Reson Med / Soc Magn Reson Med. 2009;62:691–8. doi:10.1002/mrm.22048.

    Article  Google Scholar 

  38. Kolipaka A et al. MR elastography as a method for the assessment of myocardial stiffness: comparison with an established pressure-volume model in a left ventricular model of the heart. Magn Reson Med Off J Soc Magn Reson Med / Soc Magn Reson Med. 2009;62:135–40. doi:10.1002/mrm.21991.

    Article  Google Scholar 

  39. Kass DA. Assessment of diastolic dysfunction. Invasive modal. Cardiol Clin. 2000;18:571–86.

    Article  CAS  PubMed  Google Scholar 

  40. Tzschatzsch H et al. Isovolumetric elasticity alteration in the human heart detected by in vivo time-harmonic elastography. Ultrasound Med Biol. 2013;39:2272–8. doi:10.1016/j.ultrasmedbio.2013.07.003.

    Article  PubMed  Google Scholar 

  41. Elgeti T et al. Shear-wave amplitudes measured with cardiac MR elastography for diagnosis of diastolic dysfunction. Radiology. 131605. doi:10.1148/radiol.13131605. This paper presents initial results in patients with diastolic dysfunction regarding changes in the transmission properties of low-frequency waves. Although of potential diagnostic value, it remains to be understood whether those changes reflect changes in the shear properties of the myocardium.

  42. O'Brien PD, O'Brien Jr WD, Rhyne TL, Warltier DC, Sagar KB. Relation of ultrasonic backscatter and acoustic propagation properties to myofibrillar length and myocardial thickness. Circulation. 1995;91:171–5.

    Article  PubMed  Google Scholar 

  43. D’hooge J et al. Evaluation of transmural myocardial deformation and reflectivity characteristics. Ultrason. 2001. 1185–8.

  44. Kolipaka A, Araoz P, McGee K, Manduca A, Ehman R. Magnetic resonance elastography as a method for the assessment of effective myocardial stiffness throughout the cardiac cycle. Magn Reson Med Off J Soc Magn Reson Med / Soc Magn Reson Med. 2010;64:862–70.

    Article  Google Scholar 

  45. Kolipaka A et al. In vivo assessment of MR elastography-derived effective end-diastolic myocardial stiffness under different loading conditions. J Magn Reson Imaging JMRI. 2011;33:1224–8. doi:10.1002/jmri.22531.

    Article  Google Scholar 

  46. Kolipaka A et al. Magnetic resonance elastography as a method to estimate myocardial contractility. J Magn Reson Imaging JMRI. 2012;36:120–7. This study investigated the influence of geometric boundary conditions and sought limits for the proposed stiffness calculation method. A finite element modeling analysis revealed significant biases in the stiffness estimate when the ratio of wavelength to wall thickness exceeded 2.5. Here, the increase of effective end-systolic stiffness was correlated with the increase in heart rate by epinephrine infusion in a pig model. A good linear correlation was found for the individual measurements, with R 2 values ranging from 0.86 to 0.99 in four pigs.

  47. Taniguchi T et al. Usefulness of transient elastography for noninvasive and reliable estimation of right-sided filling pressure in heart failure. Am J Cardiol. 2014;113:552–8. doi:10.1016/j.amjcard.2013.10.018.

    Article  PubMed  Google Scholar 

  48. Allen LA et al. Liver function abnormalities and outcome in patients with chronic heart failure: data from the Candesartan in Heart Failure: Assessment of Reduction in Mortality and Morbidity (CHARM) program. Eur J Heart Fail. 2009;11:170–7. doi:10.1093/eurjhf/hfn031.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Castera L, Foucher J, Bertet J, Couzigou P, de Ledinghen V. FibroScan and FibroTest to assess liver fibrosis in HCV with normal aminotransferases. Hepatology. 2006;43:373–4. doi:10.1002/hep.21019. author reply 375-376.

    Article  PubMed  Google Scholar 

  50. Papadacci C, Pernot M, Couade M, Fink M, Tanter M. High-contrast ultrafast imaging of the heart. IEEE Trans Ultrason Ferroelectr Freq Control. 2014;61:288–301. doi:10.1109/TUFFC.2014.6722614. This paper describes the real-time capabilities of ultrafast ultrasound-based elastography and its application to the cardiovascular domain. Although typically limited to encoding only one or two displacement directions, this method allows fascinating in vivo applications because of an unmatched frame rate of up to 4500 images per second.

    Article  PubMed  Google Scholar 

  51. Dutta D et al. Non-invasive assessment of elastic modulus of arterial constructs during cell culture using ultrasound elasticity imaging. Ultrasound Med Biol. 2013;39:2103–15. doi:10.1016/j.ultrasmedbio.2013.04.023.

    Article  PubMed  Google Scholar 

  52. Smith N et al. euHeart: personalized and integrated cardiac care using patient-specific cardiovascular modelling. Interface Focus. 2011;1:349–64. doi:10.1098/rsfs.2010.0048.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Lee J et al. Coupling contraction, excitation, ventricular and coronary blood flow across scale and physics in the heart. Philos Transact A Math Phys Eng Sci. 2009;367:2311–31. doi:10.1098/rsta.2008.0311.

    Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Ralph Sinkus declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Sinkus.

Additional information

Topical Collection on Cardiac Magnetic Resonance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinkus, R. Elasticity of the Heart, Problems and Potentials. Curr Cardiovasc Imaging Rep 7, 9288 (2014). https://doi.org/10.1007/s12410-014-9288-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12410-014-9288-7

Keywords

Navigation