Skip to main content

Advertisement

Log in

UAV-Based Survey of Glaciers in Himalayas: Challenges and Recommendations

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Role of Unmanned Aerial Vehicle (UAV)-based remote sensing (RS) applications in glaciology have increased in recent years. UAV-based RS studies on mountain glaciers are mainly focussing on obtaining accurate ultra-high-resolution data from UAV images for different glaciological applications. However, studies understanding the challenges involved during UAV surveys on complex terrains of high mountain glaciers are inadequate and they are not available for places like Himalayas. Therefore, this study aims to examine and derive strategies to minimize those challenges on such complex glacier and their margin topography. Here, UAV surveys were conducted using a fixed-wing commercial-grade off-the-shelf UAV (eBee series, SenseFly) on three glacier sites (East Rathong, Hamtah and Panchinala-A) located in different climate regimes within the Indian part of Himalayas. From the UAV collected images, ultra-high-resolution ortho-mosaicked images and Digital Elevation Models were generated at 0.1 m ground sample distance and their accuracies were assessed using the collected ground control points. Based on the challenges observed, the study recommends criteria for selection of best-suited take-off/landing locations on a mountain glacier and its margins for conducting efficient UAV surveys in the complex terrain such as in the Himalayas and possibly beyond. Recommendations reported in this article shall be useful to minimize the challenges and associated risks during UAV data acquisition using fixed-wing UAVs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

source of glaciers: Hillshade of ALOS World 3D—30 m (AW3D30) Version 3.1

Fig. 2
Fig. 3
Fig. 4

source: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community

Fig. 5

Similar content being viewed by others

References

  • Azam, M. F., Wagnon, P., Berthier, E., Vincent, C., Fujita, K., & Kargel, J. S. (2018). Review of the status and mass changes of Himalayan-Karakoram glaciers. Journal of Glaciology, 64(243), 61–74. https://doi.org/10.1017/jog.2017.86.

    Article  Google Scholar 

  • Bajracharya, S. R., Maharjan, S. B., & Shrestha, F. (2014). Understanding dynamics of Himalayan glaciers: Scope and challenges of remote sensing. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(8), 1283. https://doi.org/10.5194/isprsarchives-xl-8-1283-2014.

    Article  Google Scholar 

  • Bash, E. A., Moorman, B. J., Menounos, B., & Gunther, A. (2020). Evaluation of SfM for surface characterization of a snow-covered glacier through comparison with aerial lidar. Journal of Unmanned Vehicle Systems. https://doi.org/10.1139/juvs-2019-0006.

    Article  Google Scholar 

  • Bhardwaj, A., Joshi, P. K., Sam, L., & Snehmani. 2015. Remote sensing of alpine glaciers in visible and infrared wavelengths: A survey of advances and prospects. Geocarto International. 31(5), 557–574. https://doi.org/10.1080/10106049.2015.1059903

  • Bhardwaj, A., Sam, L., Bhardwaj, A., & Martín-Torres, F. J. (2016b). LiDAR remote sensing of the cryosphere: Present applications and future prospects. Remote Sensing of Environment, 177, 125–143. https://doi.org/10.1016/j.rse.2016.02.031.

    Article  Google Scholar 

  • Bhardwaj, A., Sam, L., Martín-Torres, F. J., & Kumar, R. (2016a). UAVs as remote sensing platform in glaciology: Present applications and future prospects. Remote Sensing of Environment, 175, 96–204. https://doi.org/10.1016/j.rse.2015.12.029.

    Article  Google Scholar 

  • Bodin, X., Thibert, E., Sanchez, O., Rabatel, A., & Jaillet, S. (2018). Multi-annual kinematics of an active rock glacier quantified from very high-resolution DEMs: An application-case in the French Alps. Remote Sensing, 10(4), 547. https://doi.org/10.3390/rs10040547.

    Article  Google Scholar 

  • Brun, F., Wagnon, P., Berthier, E., Shea, J. M., Immerzeel, W. W., Kraaijenbrink, P. D. A., et al. (2018). Ice cliff contribution to the tongue-wide ablation of Changri Nup Glacier, Nepal, Central Himalaya. The Cryosphere, 12, 3439–3457. https://doi.org/10.5194/tc-12-3439-2018.

    Article  Google Scholar 

  • Buri, P., Miles, E. S., Steiner, J. F., Immerzeel, W. W., Wagnon, P., & Pellicciotti, F. (2016). A physically based 3-D model of ice cliff evolution over debris-covered glaciers. Journal of Geophysical Research: Earth Surface, 121(12), 2471–2493. https://doi.org/10.1002/2016jf004039.

    Article  Google Scholar 

  • Chudley, T. R., Christoffersen, P., Doyle, S. H., Abellan, A., & Snooke, N. (2019). High-accuracy UAV photogrammetry of ice sheet dynamics with no ground control. The Cryosphere, 13, 955–968. https://doi.org/10.5194/tc-13-955-2019.

    Article  Google Scholar 

  • Department of Science & Technology and Climate change, Government of Sikkim, R&D activities on Climate Change. Available online: http://dstsikkim.gov.in/R&D%20activities%20.html Retrieved June 21, 2020.

  • Ewertowski, M., Tomczyk, A., Evans, D., Roberts, D., & Ewertowski, W. (2019). Operational framework for rapid, very-high resolution mapping of glacial geomorphology using low-cost unmanned aerial vehicles and structure-from-motion approach. Remote Sensing, 11(1), 65. https://doi.org/10.3390/rs11010065.

    Article  Google Scholar 

  • Fugazza, D., Scaioni, M., Corti, M., D’Agata, C., Azzoni, R. S., Cernuschi, M., et al. (2018). Combination of UAV and terrestrial photogrammetry to assess rapid glacier evolution and map glacier hazards. Natural Hazard and Earth System Sciences, 18, 1055–1071. https://doi.org/10.5194/nhess-18-1055-2018.

    Article  Google Scholar 

  • Fugazza, D., Senese, A., Azzoni, R. S., Smiraglia, C., Cernuschi, M., Severi, D., & Diolaiuti, G. (2015). High-resolution mapping of glacier surface features. The UAV survey of the Forni Glacier (Stelvio National Park, Italy). Geografia Fisica e Dinamica Quaternaria, 28, 25–33. https://doi.org/10.4461/GFDQ.2015.38.03.

    Article  Google Scholar 

  • Gaffey, C., & Bhardwaj, A. (2020). Applications of unmanned aerial vehicles in cryosphere: Latest advances and prospects. Remote Sensing, 12(6), 948. https://doi.org/10.3390/rs12060948.

    Article  Google Scholar 

  • Gindraux, S., Boesch, R., & Farinotti, D. (2017). Accuracy assessment of digital surface models from unmanned aerial vehicles’ imagery on glaciers. Remote Sensing, 9(2), 186. https://doi.org/10.3390/rs9020186.

    Article  Google Scholar 

  • Groos, A. R., Bertschinger, T. J., Kummer, C. M., Erlwein, S., Munz, L., & Philipp, A. (2019). The potential of low-cost UAVs and open-source photogrammetry software for high-resolution monitoring of Alpine glaciers: a case study from the Kanderfirn (Swiss Alps). Journal of Geosciences, 9(8), 356. https://doi.org/10.3390/geosciences9080356.

    Article  Google Scholar 

  • Haeberli, W., Hoelzle, M., Paul, F., & Zemp, M. (2007). Integrated monitoring of mountain glaciers as key indicators of global climate change: The European Alps. Annals of Glaciology, 46, 150–160. https://doi.org/10.3189/172756407782871512.

    Article  Google Scholar 

  • Immerzeel, W. W., Kraaijenbrink, P. D. A., Shea, J. M., Shrestha, A. B., Pellicciotti, F., Bierkens, M. F. P., & De Jong, S. M. (2014). High-resolution monitoring of Himalayan glacier dynamics using unmanned aerial vehicles. Remote Sensing of Environment, 150, 93–103. https://doi.org/10.1016/j.rse.2014.04.025.

    Article  Google Scholar 

  • Jouvet, G., van Dongen, E., Lüthi, M., & Vieli, A. (2019). In Situ measurements of the ice flow motion at Eqip Sermia glacier using a remotely controlled unmanned aerial vehicle (UAV). Geoscientific Instrumentation, Methods and Data Systems, 9(1), 1–15. https://doi.org/10.5194/gi-9-1-2020.

    Article  Google Scholar 

  • Kaufmann, V., Seier, G., Sulzer, W., Wecht, M., Liu, Q., Lauk, G., & Maurer, M. (2018). Rock glacier monitoring using aerial photographs: conventional vs. UAV-based mapping-A comparative study. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. https://doi.org/10.5194/isprs-archives-xlii-1-239-2018.

    Article  Google Scholar 

  • Kraaijenbrink, P., Meijer, S. W., Shea, J. M., Pellicciotti, F., De Jong, S. M., & Immerzeel, W. W. (2016a). Seasonal surface velocities of a Himalayan Glacier derived by automated correlation of unmanned aerial vehicle imagery. Annals of Glaciology, 57(71), 103–113. https://doi.org/10.3189/2016aog71a072.

    Article  Google Scholar 

  • Kraaijenbrink, P. D., Shea, J. M., Litt, M., Steiner, J. F., Treichler, D., Koch, I., & Immerzeel, W. W. (2018). Mapping surface temperatures on a debris-covered glacier with an unmanned aerial vehicle. Frontiers of Earth Science, 6, 64. https://doi.org/10.3389/feart.2018.00064.

    Article  Google Scholar 

  • Kraaijenbrink, P. D. A., Shea, J. M., Pellicciotti, F., De Jong, S. M., & Immerzeel, W. W. (2016b). Object-based analysis of unmanned aerial vehicle imagery to map and characterise surface features on a debris-covered glacier. Remote Sensing of Environment, 186, 581–595. https://doi.org/10.1016/j.rse.2016.09.013.

    Article  Google Scholar 

  • Liang, H., Huang, X., Sun, Y., Wang, Y., & Liang, T. (2017). Fractional snow-cover mapping based on MODIS and UAV data over the Tibetan Plateau. Remote Sensing, 9(12), 1332. https://doi.org/10.3390/rs9121332.

  • Luo, L., Ma, W., Zhao, W., Zhuang, Y., Zhang, Z., Zhang, M., Ma, D., & Zhou, Q. (2018). UAV-based spatiotemporal thermal patterns of permafrost slopes along the Qinghai–Tibet Engineering Corridor. Landslides, 15(11), 2161–2172. https://doi.org/10.1007/s10346-018-1028-7.

  • Mark, B. G., French, A., Baraer, M., Carey, M., Bury, J., Young, K. R., et al. (2017). Glacier loss and hydro-social risks in the Peruvian Andes. Global and Planetary Change, 159, 61–76. https://doi.org/10.1016/j.gloplacha.2017.10.003.

    Article  Google Scholar 

  • Maurer, J. M., Schaefer, J. M., Rupper, S., & Corley, A. (2019). Acceleration of ice loss across the Himalayas over the past 40 years. Science Advances, 5(6), p.eaav7266. https://doi.org/10.1126/sciadv.aav7266.

    Article  Google Scholar 

  • Monitoring Snow and Glaciers of Himalayan Region. (2016). Space Applications Centre (SAC), ISRO, Ahmedabad, India. 245. ISBN: 978 – 93 – 82760 – 24 – 5.

  • Pajares, G. (2015). Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs). Photogrammetric Engineering and Remote Sensing, 81(4), 281–330. https://doi.org/10.14358/pers.81.4.281.

    Article  Google Scholar 

  • Racoviteanu, A., Arnaud, Y., Williams, M. W., & Manley, W. F. (2014). Spatial patterns in glacier characteristics and area changes from 1962 to 2006 in the Kanchenjunga-Sikkim area, eastern Himalaya. The Cryosphere, 8(4), 3949–3998. https://doi.org/10.5194/tcd-8-3949-2014.

    Article  Google Scholar 

  • Rossini, M., Di Mauro, B., Garzonio, R., Baccolo, G., Cavallini, G., Mattavelli, M., et al. (2018). Melting dynamics of an Alpine Glacier with repeated UAV photogrammetry. Geomorphology, 304, 159–172. https://doi.org/10.1016/j.geomorph.2017.12.039.

    Article  Google Scholar 

  • Ryan, J. C., Hubbard, A. L., Box, J. E., Todd, J., Christoffersen, P., Carr, J. R., et al. (2015). UAV photogrammetry and structure from motion to assess calving dynamics at Store Glacier, a large outlet draining the Greenland ice sheet. The Cryosphere, 9, 1–11. https://doi.org/10.5194/tc-9-1-2015.

    Article  Google Scholar 

  • Strozzi, T., Kääb, A., & Frauenfelder, R. (2004). Detecting and quantifying mountain permafrost creep from in situ inventory, space-borne radar interferometry and airborne digital photogrammetry. International Journal of Remote Sensing, 25(15), 2919–2931. https://doi.org/10.1080/0143116042000192330.

    Article  Google Scholar 

  • Stumm, D., Joshi, S. P., Salzmann, N., & MacDonell, S. (2017). In situ monitoring of mountain glaciers: Experiences from mountain ranges around the world and recommendations for the Hindu Kush Himalaya. ICIMOD Working Paper 2017/7.

  • Tonkin, T. N., & Midgley, N. G. (2016). Ground-control networks for image based surface reconstruction: An investigation of optimum survey designs using UAV derived imagery and structure-from-motion photogrammetry. Remote Sensing, 8(9), 786. https://doi.org/10.3390/rs8090786.

    Article  Google Scholar 

  • Vincent, C., Ramanathan, A., Wagnon, P., Dobhal, D. P., Linda, A., Berthier, E., et al. (2012). Mass gain of glaciers in Lahaul and Spiti region (North India) during the nineties revealed by in-situ and satellite geodetic measurements. The Cryosphere, 6(5), 3733–3755. https://doi.org/10.5194/tcd-6-3733-2012.

    Article  Google Scholar 

  • Vincent, C., Wagnon, P., Shea, J., Immerzeel, W., Kraaijenbrink, P., Shrestha, D., et al. (2016). Reduced melt on debris-covered glaciers: Investigations from Changri Nup Glacier, Nepal. The Cryosphere, 10, 1845–1858. https://doi.org/10.5194/tc-10-1845-2016.

    Article  Google Scholar 

  • Vivero, S., & Lambiel, C. (2019). Monitoring the crisis of a rock glacier with repeated UAV surveys. Geographica Helvetica, 74(1), 59–69. https://doi.org/10.5194/gh-74-59-2019.

    Article  Google Scholar 

  • Wang, P., Li, Z., Jin, S., Zhou, P., Yao, H., & Wang, W. (2014). Ice thickness, volume and subglacial topography of Urumqi Glacier No. 1, Tianshan mountains, central Asia, by ground penetrating radar survey. Journal of Earth System Science, 123(3), 581–591. https://doi.org/10.1007/s12040-014-0421-4.

    Article  Google Scholar 

  • Watson, C. S., Kargel, J. S., Shugar, D. H., Haritashya, U. K., Schiassi, E., & Furfaro, R. (2020). Mass loss from calving in Himalayan proglacial lakes. Frontiers of Earth Sciences. https://doi.org/10.3389/feart.2019.00342.

    Article  Google Scholar 

  • Wigmore, O., & Mark, B. G. (2017). Monitoring tropical debris-covered glacier dynamics from high-resolution unmanned aerial vehicle photogrammetry, Cordillera Blanca, Peru. The Cryosphere, 11, 2463. https://doi.org/10.5194/tc-11-2463-2017.

    Article  Google Scholar 

  • Yao, H., Qin, R., & Chen, X. (2019). Unmanned aerial vehicle for remote sensing applications-A review. Remote Sensing, 11(12), 1443. https://doi.org/10.3390/rs11121443.

    Article  Google Scholar 

  • Yordanov, V., Fugazza, D., Azzoni, R. S., Cernuschi, M., Scaioni, M., & Diolaiuti, G. A. (2019). Monitoring alpine glaciers from close-range to satellite sensors. ISPRS Journal of Photogrammetry and Remote Sensing. https://doi.org/10.5194/isprs-archives-xlii-2-w13-1803-2019.

    Article  Google Scholar 

  • Zemp, M., Nussbaumer, S. U., GärtnerRoer, I., Huber, J., Machguth, H., Paul, F., & Hoelzle, M. (eds.). (2017). ICSU(WDS)/IUGG(IACS)/UNEP/UNESCO/WMO, World Glacier Monitoring Service, Zurich, Switzerland. WGMS. Global Glacier Change Bulletin No. 2 (2014–2015). 244. publication based on database version. https://doi.org/10.5904/wgms-fog-2017-10.

Download references

Acknowledgements

This study was funded by Ministry of Earth Sciences (MOES) and Ministry of Human Resource Development (MHRD), Government of India for the project titled “RISK ASSESSMENT OF MORAINE DAMMED GLACIER LAKES DUE TO CLIMATE CHANGE” (Project Number: 4096) under the scheme called IMPacting Research INnovation and Technology (IMPRINT) scheme. We acknowledge Sakura Geoinformation Software Research Pvt. Ltd. Chennai, and their team for providing UAV-related training and their support during field investigations. We thank Dr Ankur Pandit, Dr Prateek Gantayat, Mr Abhijit Chhatry, Ms Sangita Singh, Mr Vivek Sharma, Ms Smarika Kulshrestha and Ms Anisha Narendran from Hydro-Remote Sensing Applications (H-RSA) Group, Department of Civil Engineering, Indian Institute of Technology Bombay for being part of the field investigations. We would like to thank all the porters individually from Red Panda and Travel Himalayas for assisting us throughout the fieldwork and a special thanks to Mr. Adhikari for guiding us to reach the glacier sites and his invaluable help during field measurements at Panchinala-A glacier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to RAAJ Ramsankaran.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Table 8.

Table 8 Sample list of the potential glaciers in Indian Himalayas suitable for UAV surveying of whole glacier using fixed-wing UAVs (here eBee series)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramsankaran, R., Navinkumar, P.J., Dashora, A. et al. UAV-Based Survey of Glaciers in Himalayas: Challenges and Recommendations. J Indian Soc Remote Sens 49, 1171–1187 (2021). https://doi.org/10.1007/s12524-020-01300-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-020-01300-7

Keywords

Navigation