Skip to main content

Advertisement

Log in

Utilization of Landsat-8 (OLI) Image Data for Geological Mapping of the Neo-Proterozoic Basement Rocks in the Central Eastern Desert of Egypt

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

This article discusses in detail the ability of Landsat-8 remotely sensed data to recognize and map Neo-proterozoic basement rocks in the Igla area. The Igla area in the Central Eastern Desert of Egypt is covered by a variety of Neo-proterozoic rocks comprising three tectonostratigraphic assemblages: ophiolitic, island arc, and late-to-post-tectonic assemblages. Lithological and structural mapping was achieved using Landsat-8 image data analysis, field verification, and microscopic studies. Image enhancement techniques have been applied using correlation coefficient and optimum index factor for selecting the best false-color composite, principal component analysis (PCA), and band ratio images. Based on spectral signatures, the supervised classification provided useful information and substantially improved geological mapping. The spectral measurements of the rock samples from the study area were integrated with previously obtained data, and the improved and enhanced methods were used to yield good results. Principal component analysis (PCA) (PC4, PC1, and PC3) and band ratio (6/5, 4/3, and 2/1) and (4/2, 6/7, and 5/6) in RGB with supervised classification techniques have been proven to be the best for distinguishing between the different rock units. A comparison between the map in the current study and the published geologic maps of the Igla area and field verification indicates that the present mapping, identification, and discrimination of lithological units are more accurate and much better. Accordingly, we recommend the present processing enhancement using remote sensing techniques for geological studies in the Eastern Desert of Egypt and similar arid areas worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Abd El-Rahman, Y., Polatc, A., Dilekd, Y., Kuskye, T., El-Sharkawia, M., & Saida, A. (2012). Cryogenian ophiolite tectonics and metallogeny of the Central Eastern Desert of Egypt. International Geologiy Review, 54(16), 1870–1884.

    Google Scholar 

  • Abd El-Wahed, M. A., & Kamh, S. Z. (2010). Pan-African dextral transpressive duplex and flower structure in the central Eastern Desert of Egypt. Gondwana Research, 18, 315–336.

    Google Scholar 

  • Abdeen, M. M., & Abdelghaffar, A. A. (2011). The Allaqi-Heiani Suture in Southeastern Egypt. A Neo-Proterozoic Arc-Arc Suture in the ANS, LAP LAMBERT Academic Publishing, ISBN: 978-3-8383-2204-9.

  • Abdeen, M. M., & Greiling, R. O. (2005). A quantitative structural study of late Pan-African compressional deformation in the Central Eastern Desert (Egypt) during Gondwana assembly. Gondwana Research, 8(4), 457–471.

    Google Scholar 

  • Abdeen, M. M., Thurmond, A. K., Abdelsalam, M. G., & Stern, R. J. (2002). Application of ASTER band-ratio images for geological mapping in arid regions: The Neoproterozoic Allaqi Suture, Egypt. Egypt Journal Remote Sensing and Space Sciences, 5, 19–40.

    Google Scholar 

  • Abdelmalik, K. W. (2019). Landsat 8: Utilizing sensitive response bands concept for image processing and mapping of basalts. The Egyptian Journal of Remote Sensing and Space Sciences, Accepted, in Press. https://doi.org/10.1016/j.ejrs.2019.04.004

    Article  Google Scholar 

  • Abdelmalik, K. W., & Abd-Allah, A. M. A. (2018). Integration of remote sensing technique and field data in geologic mapping of an ophiolitic suture zone in western Arabian Shield. Journal of African Earth Sciences, 146, 180–190. https://doi.org/10.1016/j.jafrearsci.2017.10.006

    Article  Google Scholar 

  • Abdelsalam, M. G., & Stern, R. J. (1999). Mineral exploration with satellite remote sensing imagery: Examples from Neoproterozoic Arabian Shield. Journal of African Earth Sciences, 28, 4a.

    Google Scholar 

  • Aboelkhair, H., Yoshiki, N., Yasushi, W., & Isao, S. (2010). Processing and interpretation of ASTER TIR data for mapping of rare-metal-enriched albite granitoids in the central Eastern Desert of Egypt. Journal of African Earth Sciences, 58(1), 141–151.

    Google Scholar 

  • Abrams, M. J., Conel, J., & Lang, H. R. (1984). The Joint NASA Geostatal test case project (USA; AAPG Bookstore) Vol. I Part 9.

  • Abu El-Ela, F. F. (1992). Bimodal volcanism of the Igla Al-Sawda-Um Khariga metavolcanics, Eastern Desert, Egypt. Journal of Africa Earth Sciences, 14, 477–491.

    Google Scholar 

  • Adiri, Z., El-Harti, A., Jellouli, A., Lhissou, R., Maacha, L., Zouhair, M., & Bachoui, E. (2017). Comparison of Landsat-8, ASTER and Sentinel-1 satellite remote sensing data in Automatic Lineaments Extraction: A case study of Sidi Flah-Bouskour inlier, Moroccan Anti Atlas. Advances in Space Research, 60, 2355–2367.

    Google Scholar 

  • Ahmad, L., Shah, M. T., & Khan, S. D. (2016). Reflectance spectroscopy and remote sensing data for finding sulfide-bearing alteration zones and mapping geology in Gilgit-Baltistan, Pakistan. Earth Science Informatics, 9, 113–121.

    Google Scholar 

  • Ali, E. A., El-Khidir, S. O., Babikir, I. A. A., & Abd El-Rahman, E. M. (2012). Landsat ETM+7 digital image processing techniques for lithological and structural lineament enhancement: Case study around Abidiya area, Sudan. The Open Remote Sensing Journal, 5, 83–89.

    Google Scholar 

  • Amer, R. M., Kusky, T. M., & El-Mezayan, A. (2011). Remote sensing detection of gold related alteration zones in Um-Rus area, central Eastern Desert of Egypt. Journal Advances Space Research, 49, 121–134.

    Google Scholar 

  • Amer, R. M., Kusky, T. M., & Ghulam, A. (2009). Image processing and analysis using ETM+ imagery for lithological mapping at Fawakhir, Central Eastern Desert of Egypt. In Proceedings of ASPRS, American Society for Photogrammetry and Remote Sensing Annual Conference, Baltimore, Maryland, USA.

  • Cohen, W. B., & Justice, C. O. (1999). Validating MODIS terrestrial ecology products: Linking in situ and satellite measurements. Remote Sensing of Environment, 70, 1–3.

    Google Scholar 

  • Congalton, R., & Green, K. (1999). Assessing the accuracy of remotely sensed data: Principles and practices (1st ed., p. 137). Lewis Publishers.

    Google Scholar 

  • Drury, S. A. (1993). Image interpretation in geology (2nd ed., p. 283). Chapman and Hall.

    Google Scholar 

  • EGSMA. (1991). Geological maps of Marsa Alam 1:100,000 Scale. The Egyptian Geologic Survey and Mining Authority, (EGSMA), Abbasiya, Cairo.

  • El-Gaby, S., List, F. K., & Tehrani, R. (1988). Geologic evolution and metallogensis of the Pan-African belt in Egypt. In S. El-Gaby & R. O. Greiling (Eds.), The Pan-African belt of Northeast Africa and Adjacent Areas (pp. 17–68). Vieweg and Sohn.

    Google Scholar 

  • El-Gaby, S., El Nady, O., & Khudeir, A. A. (1984). Tectonic evolution of the basement complex in the central Eastern Desert. Geologische Rundschau, 73, 1019–1036.

    Google Scholar 

  • El-Ramly, M. F., & Akaad, M. K. (1960). The basement complex in the central Eastern Desert of Egypt between Latitudes 20° 30ˈ and 25° 40ˈN. Geological Survey Egypt, Paper No.8 pp. 8–35.

  • Faust, N. L. (1989). Image enhancement. In A. Kent & J. G. Williams (Eds.), Supplement of encyclopedia of computer science and technology. (Vol. 20). Marcel Dekker Inc.

    Google Scholar 

  • Foody, G. M. (2002). Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80(1), 185–201.

    Google Scholar 

  • Fritz, H., Abdelsalam, M., Ali, K. A., Bingen, B., Collins, A. S., Fowler, A. R., Ghebreab, W., Hauzenberger, C. A., Johnson, P. R., Kusky, T. M., Macey, P., Muhongo, S., Stern, R. G., & Viola, G. (2013). Orogen styles in the East African Orogen: A review of the Neoproterozoic to Cambrian tectonic evolution. Journal of African Earth Sciences, 86, 65–106.

    Google Scholar 

  • Gad, S., & Kusky, T. M. (2006). Lithological mapping in the Eastern Desert of Egypt, the Barramiya area, using Landsat Thematic Mapper. Journal of African Earth Sciences, 44, 196–202.

    Google Scholar 

  • Greiling, R. O., Abdeen, M. M., Dardir, A. A., El Akhal, H., El Ramly, M. F., Kamal El Din, G. M., Osman, A. F., Rashwan, A. A., Rice, A. H. N., & Sadek, M. F. (1994). A structural synthesis of the proterozoic Arabian –Nubian shield in Egypt. Geologisches Rundschau, 83, 484–501.

    Google Scholar 

  • Hamimi, Z., & Hagag, W. (2017). A new tectonic model for Abu-Dabbab seismogenic zone (Eastern Desert, Egypt): Evidence from field-structural, EMR and seismic data. Arabian Journal of Geosciences, 10, 11. https://doi.org/10.1007/s12517-016-2786-y

    Article  Google Scholar 

  • Hamimi, Z., Hagag, W., & Kamh, S. (2020). Application of remote-sensing techniques in geological and structural mapping of Atalla Shear Zone and Environs, Central Eastern Desert. Egypt. Arab J Geosci, 13, 414. https://doi.org/10.1007/s12517-020-05324-8

    Article  Google Scholar 

  • Han, T., & Nelson, J. (2015). Mapping hydrothermally altered rocks with Landsat 8 imagery : A case study in the KSM and Snow field zones , northwestern British Columbia. In: Geological Fieldwork 2014, British Columbia Ministry of Energy and Mines, British Columbia Geological Survey Paper, 2015–1, pp.103–112.

  • Harris, J. R., Mcgregor, R., & Budkewitsch, P. (2010). Geological analysis of hyperspectral data over southwest Baffin Island: Methods for producing spectral maps that relate to variations in surface lithologies. Canadian Journal of Remote Sensing, 36, 412–435.

    Google Scholar 

  • Hassan, S. M., El-Kazzaz, Y. A., Taha, M. M. N., & Mohammed, A. T. (2017). Late Neoproterozoic basement rocks of Meatiq area, central Eastern Desert, Egypt: Petrography and remote sensing characterizations. Journal of African Earth Sciences, 131, 14–31.

    Google Scholar 

  • Hassan, S. M., & Sadek, M. F. (2017). Geological mapping and spectral based classification of basement rocks using remote sensing data analysis: The Korbiai-Gerf nappe complex, South Eastern Desert, Egypt. Journal of African Earth Sciences, 134, 404–418.

    Google Scholar 

  • Hassanen, A. M., El-Nisr, A. S., & Mohamed, H. F. (1996). Geo-chemistry and petrogenesis of Pan-African I-type granitoids at Gabal Igla El-Ahmar, Eastern Desert, Egypt. Journal of African Earth Science, 22(1), 29–42.

    Google Scholar 

  • Howari, F. M., Acbas, G., Nazzal, Y., & AlAydaroos, F. (2018). Hapke-based computational method to enable unmixing of hyperspectral data of common salts. Chemistry Central Journal. https://doi.org/10.1186/s13065-018-0460-z

    Article  Google Scholar 

  • Justice, C., Belward, A., Morisette, J., Lewis, P., Privette, J., & Baret, F. (2000). Developments in the ‘validation’ of satellite sensor products for the study of the land surface. International Journal of Remote Sensing, 21, 3383–3390.

    Google Scholar 

  • Kamel, M., Youssef, M., Hassan, M. A., & Bagash, F. (2016). Utilization of ETM+ Landsat data in geologic mapping of Wadi Ghadir and Gabal Zabara area, central Eastern Desert, Egypt. Egypt Journal of Remote Sensing and Space Sciences. https://doi.org/10.1016/j.ejrs.2016)

    Article  Google Scholar 

  • Khalil, B. (2005). Petrological and mineralogical studies of Pan African serpentinites at Bir Al-Edeid area, central Eastern Desert, Egypt. Journal of African Earth Sciences, 43, 525–536.

    Google Scholar 

  • Khatami, R., Mountrakis, G., & Stehman, S. V. (2017). Mapping per-pixel predicted accuracy of classified remote sensing images. Remote Sensing of Environment, 191, 156–167.

    Google Scholar 

  • Kokaly, R.F., Clark, R.N., Swayze, G.A., Livo, K.E., Hoefen, T.M., Pearson, N.C., Wise, R.A., Benzel, W.M., Lowers, H.A., Driscoll, R.L., & Klein, A.J., (2017) USGS Spectral Library Version 7: U.S. Geological Survey Data Series 1035, 61 p., https://doi.org/10.3133/ds1035.

  • Korb, A. R., Dybwad, P., Wadsworth, W., & Salisbury, J. W. (1996). Portable FTIR spectrometer for field measurements of radiance and emissivity. Applied Optics, 35, 1679–1692.

    Google Scholar 

  • Lyons, M. B., Keitha, D. A., Phinnc, S. R., Masona, T. J., & Elith, J. (2018). A comparison of resampling methods for remote sensing classification and accuracy assessment. Remote Sensing of Environment, 208, 145–153.

    Google Scholar 

  • Madani, A., & Emam, A. (2011). SWIR ASTER band ratios for lithological mapping and mineral exploration: A case study from El-Hudi area, Southeastern Desert, Egypt. Arabian Journal of Geosciences, 4, 45–52.

    Google Scholar 

  • Madani, A., & Harbi, H. (2012). Spectroscopy of the mineralized tonalite–diorite intrusions, Bulghah gold mine area, Saudi Arabia: Effects of opaques and alteration products on FieldSpec data. Ore Geology Reviews, 44, 148–157.

    Google Scholar 

  • Masoumi, F., Eslamkish, T., Abkar, A. A., Honarmand, M., & Harris, R. J. (2017). Integration of spectral, thermal, and textural features of ASTER data using Random Forests classification for lithological mapping. Journal of African Earth Sciences, 129, 445–457.

    Google Scholar 

  • Mohamed, M. A., & El-Nady, O. M. (1999). Petrochemistry and geochemistry of Gabal Igla Al-Ahmar composite granite pluton, central Eastern Desert of Egypt. In The First International Conference on the Geology of Africa. Assiut University, Egypt. Vol. 2, (pp.141–157).

  • Mwaniki, M. W., Moeller M. S., & Schellmann, G. (2015). A comparison of Landsat 8 (OLI) and Landsat 7 (ETM+) in mapping geology and visualizing lineaments: A case study of central region Kenya. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-7/W3. In 2015 36th International Symposium on Remote Sensing of Environment, Germany.

  • Osman, A. M., Bakhit, F. S., Ibrahim, M. E., El-Mansi, M. M., & Arbab, A. A. (2003). Petrology and radioactivity of Gabal Igla Al-Hamra granitoid rocks, central Eastern Desert. Egypt. Egyptian Journal of Geology, 47(2), 633–648.

    Google Scholar 

  • Qiu, F., Abdelsalam, M. G., & Thakkar, P. (2006). Spectral analysis of ASTER data covering part of the Neoproterozoic Allaqi-Heiani suture, southern Egypt. Journal of African Earth Sciences, 44, 169–180.

    Google Scholar 

  • Ries, A. C., Shackelton, R. M., Graham, R. H., & Fitches, W. R. (1983). Pan African structures, ophiolites and mélange in the Eastern Desert of Egypt, a traverse at 26° N. Journal of the Geological Society London, 140, 75–95.

    Google Scholar 

  • Roy, D. P., Wulder, M. A., Loveland, T. R., Woodcock, C. E., Allen, R. G., Anderson, M. C., et al. (2014). Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing Environ., 145, 154–172.

    Google Scholar 

  • Sabet, A. H., Chabanenco, V., & Tsogoev, V. B. (1976). Tin-Tungsten and rare-metal minerali-zation in the central Eastern Desert of Egypt. Annals Geological Survey Egypt, 3, 75–86.

    Google Scholar 

  • Sabins, F. F. (1997). Remote sensing principles and interpretation (p. 494). Freeman New York.

    Google Scholar 

  • Sabins, F. F. (1999). Remote sensing for mineral exploration. Ore Geology Reviews, 14(3), 157–183.

    Google Scholar 

  • Sadek, M. F., El-kalioubi, B. A., & Ali-Bik, M. W. (2020). Utilizing Landsat-8 and ASTER data in geologic mapping of hyper-arid mountainous region: Case of Gabal Batoga area, South Eastern Desert of Egypt. Environment and Earth Science, 79, 101. https://doi.org/10.1007/s12665-020-8845-4

    Article  Google Scholar 

  • Salisbury, J. W., Walter, L. S., Vergo, N., & D’Aria, D. M. (1991). Infrared (2.1–25 Micrometers) Spectra of Minerals (p. 294). Johns Hopkins University Press.

    Google Scholar 

  • Shedid, G. A. (1997). Application of geoinformation system, in the inter-pretation of geological, geophysical and remote sensing data in the area west of Marsa Alam, Egypt. Unpublished MSc. Thesis, Geology Dept. Faculty of Science, Ain Shams University. Cairo.

  • Shi, C., Ding, X., Liu, Y., & Zhou, X. (2018). Reflectance spectral features and significant minerals in Kaishantun Ophiolite Suite, Jilin Province, NE China. Minerals, 8(3), 100. https://doi.org/10.3390/min8030100.

    Google Scholar 

  • Stern, R. J., Johnson, P., Kroener, A., & Yibas, B. (2004). Neoproterozoic ophiolites of the Arabian-Nubian shield. In T. M. Kusky (Ed.), Precambrian Ophiolites and Related Rocks (pp. 95–128). Elsevier.

    Google Scholar 

  • Sultan, M., Arvidson, R. E. and Sturchio, N. C. (1986). Digital mapping of ophiolite mélange zones from Landsat Thematic Mapper TM data in arid areas: Meatiq dome, Egypt, Geological Society of America Annual Meeting, Abstracts with Programs, 18, 766.

  • Sultan, M., Arvidson, R. E., Sturchio, N. C., & Guinnes, E. A. (1987). Lithologic mapping in arid regions with Landsat TM data: Meatiq dome, Egypt. Geological Society of America Bulletin, 99, 748–762.

    Google Scholar 

  • Wang, Y.J., Lin, Q.J., Chen, Y., (2014) A method to improve mineral identification accuracy based on hyperspectral data. In IOP Conf. Ser.: Earth Environ. Sci. 17, 012206.

  • Yeomans, C. M., Middleton, M., Shail, R. K., Grebby, S., & Lusty, P. A. J. (2019). Integrated object-based image analysis for semi-automated geological lineament detection in southwest England. Computers & Geosciences, 123, 137–148.

    Google Scholar 

  • Yousif, M. S. M., & Shedid, G. A. (1999). Remote sensing signature of some selected basement rock units from the central Eastern Desert of Egypt. Egypt Journal Remote Sensing and Space Science, 2, 171–189.

    Google Scholar 

  • Youssef, A. M., Zaghloul, E. A., Moussa, M. F., & Mahdi, A. M. (2009). Lithological mapping using Landsat ETM+ in the central Eastern Desert, Egypt: Case study: Areas surround Gabal Al Haded. Egyptian Journal of Remote Sensing and Space Science, 12, 87–10.

    Google Scholar 

  • Zhang, X., Pazner, M., & Duke, N. (2007). Lithologic and mineral information extraction for gold exploration using ASTER data in the south Chocolate Mountains (California). Photo-Grammetry and Remote Sensing, 62, 271–282.

    Google Scholar 

  • Zoheir, B., & Emam, A. (2012). Integrated analysis of field, mineralogical and satellite imagery data for geologic mapping and exploration targets in the greenstone terrane of South Eastern Desert, Egypt. Journal of African Earth Science, 66–67, 22–34.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Kamel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamel, M., Abdeen, M.M., Youssef, M.M. et al. Utilization of Landsat-8 (OLI) Image Data for Geological Mapping of the Neo-Proterozoic Basement Rocks in the Central Eastern Desert of Egypt. J Indian Soc Remote Sens 50, 469–492 (2022). https://doi.org/10.1007/s12524-021-01465-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-021-01465-9

Keywords

Navigation