Skip to main content

Advertisement

Log in

GIS-Based Water Budget Estimation of the Kizilirmak River Basin using GLDAS-2.1 Noah and CLSM Models and Remote Sensing Observations

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Satellite remote sensing products are becoming increasingly important in water resources management. Monitoring water availability and demand within a basin is a primary requirement of effective and sustainable river basin management. In this study, monthly and annual water budget components of the Kizilirmak River Basin were estimated from satellite observations and GLDAS-2.1 Noah and CLSM models for the hydrological years 2014 and 2015. Precipitation (P), evapotranspiration (ET), terrestrial water storage (TWS), and runoff (R) datasets were taken from different sources (GPM IMERG, CHIRPS, MODIS, SSEBop, GRACE, CLSM, Noah, and streamflow gauge). Since R is not directly available from remote sensing observations, it was inferred from the water balance equation as a residual. The datasets were processed, analyzed, and intercompared. The performance of satellite remote sensing in water budget estimation was evaluated, and the consistency of spatial patterns between satellite data and earth system-modeled data was analyzed. As a result of the analysis, remotely sensed P showed good consistencies; however, ET and TWS change showed large uncertainties. Inferred runoff from remote sensing and model outputs showed significant differences from the observed streamflow measurements; nevertheless, Noah demonstrated better consistency with the gauge observations. Our study revealed the strengths and limitations of satellite-based remote sensing and GLDAS-2.1 CLSM and Noah models in estimating water budget. Caution should be exercised when using remote sensing and modeled data in ungauged regions because human influence is not included in such datasets. Despite the uncertainties in GLDAS and remote sensing datasets, such data can be quite useful for evaluating seasonal and interannual changes in water components and river basin management, particularly in data-sparse regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

References

  • Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., & Nelkin, E. (2003). The version-2 global precipitation climatology Project (GPCP) monthly precipitation analysis (1979–Present). Journal of Hydrometeorology, 4(6), 1147–1167.

    Article  Google Scholar 

  • Alejo, L. A., & Alejandro, A. S. (2021). Validating CHIRPS ability to estimate rainfall amount and detect rainfall occurrences in the Philippines. Theoretical and Applied Climatology. https://doi.org/10.1007/s00704-021-03685-y

    Article  Google Scholar 

  • Alemayehu, T., van Griensven, A., Senay, G. B., & Bauwens, W. (2017). evapotranspiration mapping in a heterogeneous landscape using remote sensing and global weather datasets: Application to the Mara basin East Africa. Remote Sensing, 9(4), 390. https://doi.org/10.3390/rs9040390

    Article  Google Scholar 

  • Bai, P., Liu, X., Yang, T., Liang, K., & Liu, C. (2016). Evaluation of streamflow simulation results of land surface models in GLDAS on the Tibetan plateau. Journal of Geophysical Research: Atmospheres, 121(20), 12180–12197. https://doi.org/10.1002/2016JD025501

    Article  Google Scholar 

  • Cai, X., Yang, Z.-L., David, C. H., Niu, G.-Y., & Rodell, M. (2014). Hydrological evaluation of the Noah-MP land surface model for the Mississippi River Basin. Journal of Geophysical Research: Atmospheres, 119(1), 23–38. https://doi.org/10.1002/2013JD020792

    Article  Google Scholar 

  • Chen, F., Mitchell, K., Schaake, J., Xue, Y., Pan, H.-L., Koren, V., Duan, Q. Y., Ek, M., & Betts, A. (1996). Modeling of land surface evaporation by four schemes and comparison with FIFE observations. Journal of Geophysical Research: Atmospheres, 101(D3), 7251–7268.

    Article  Google Scholar 

  • Chen, H., Zhu, G., Zhang, K., Bi, J., Jia, X., Ding, B., Zhang, Y., Shang, S., Zhao, N., & Qin, W. (2020). Evaluation of evapotranspiration models using different LAI and meteorological forcing data from 1982 to 2017. Remote Sensing, 12(15), 2473. https://doi.org/10.3390/rs12152473

    Article  Google Scholar 

  • Chen, Y., Yang, K., Qin, J., Zhao, L., Tang, W., & Han, M. (2013). Evaluation of AMSR-E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 118(10), 4466–4475.

    Article  Google Scholar 

  • Cleugh, H. A., Leuning, R., Mu, Q., & Running, S. W. (2007). Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sensing of Environment, 106(3), 285–304. https://doi.org/10.1016/j.rse.2006.07.007

    Article  Google Scholar 

  • Cooley, S. S., & Landerer, F. W. (2021). GRACE L-3 Product user handbook. Jet Propulsion Laboratory California Institute of Technology. https://podaac-tools.jpl.nasa.gov/drive/files/allData/gracefo/docs/GRACE-FO_L3_Handbook_JPL.pdf.

  • Dai, Y., Zeng, X., Dickinson, R. E., Baker, I., Bonan, G. B., Bosilovich, M. G., Denning, A. S., Dirmeyer, P. A., Houser, P. R., & Niu, G. (2003). The common land model. Bulletin of the American Meteorological Society, 84(8), 1013–1024.

    Article  Google Scholar 

  • Deliry, S. I., Avdan, Z. Y., Do, N. T., & Avdan, U. (2020). Assessment of human-induced environmental disaster in the Aral Sea using Landsat satellite images. Environmental Earth Sciences, 79(20), 471. https://doi.org/10.1007/s12665-020-09220-y

    Article  Google Scholar 

  • Derber, J. C., Parrish, D. F., & Lord, S. J. (1991). The new global operational analysis system at the national meteorological center. Weather and Forecasting, 6(4), 538–547. https://doi.org/10.1175/1520-0434(1991)006%3c0538:TNGOAS%3e2.0.CO;2

    Article  Google Scholar 

  • Dinku, T., Funk, C., Peterson, P., Maidment, R., Tadesse, T., Gadain, H., & Ceccato, P. (2018). Validation of the CHIRPS satellite rainfall estimates over eastern Africa. Quarterly Journal of the Royal Meteorological Society, 144(S1), 292–312. https://doi.org/10.1002/qj.3244

    Article  Google Scholar 

  • Du, J., & Song, K. (2018). Validation of global evapotranspiration product (MOD16) using flux tower data from Panjin Coastal Wetland Northeast China. Chinese Geographical Science, 28(3), 420–429. https://doi.org/10.1007/s11769-018-0960-8

    Article  Google Scholar 

  • Dzikiti, S., Jovanovic, N. Z., Bugan, R. D., Ramoelo, A., Majozi, N. P., Nickless, A., Cho, M. A., Le Maitre, D. C., Ntshidi, Z., & Pienaar, H. H. (2019). Comparison of two remote sensing models for estimating evapotranspiration: Algorithm evaluation and application in seasonally arid ecosystems in South Africa. Journal of Arid Land, 11(4), 495–512. https://doi.org/10.1007/s40333-019-0098-2

    Article  Google Scholar 

  • Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., Gayno, G., & Tarpley, J. D. (2003). Implementation of Noah land surface model advances in the national centers for environmental prediction operational mesoscale Eta model. Journal of Geophysical Research Atmospheres. https://doi.org/10.1029/2002JD003296

    Article  Google Scholar 

  • Fisher, R. A., & Koven, C. D. (2020). Perspectives on the future of land surface models and the challenges of representing complex terrestrial systems. Journal of Advances in Modeling Earth Systems, 12(4), e2018MS001453. https://doi.org/10.1029/2018MS001453

    Article  Google Scholar 

  • Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Scientific Data, 2(1), 1–21. https://doi.org/10.1038/sdata.2015.66

    Article  Google Scholar 

  • Gao, H., Tang, Q., Ferguson, C. R., Wood, E. F., & Lettenmaier, D. P. (2010). Estimating the water budget of major US river basins via remote sensing. International Journal of Remote Sensing, 31(14), 3955–3978.

    Article  Google Scholar 

  • Gemitzi, A., Ajami, H., & Richnow, H.-H. (2017). Developing empirical monthly groundwater recharge equations based on modeling and remote sensing data–Modeling future groundwater recharge to predict potential climate change impacts. Journal of Hydrology, 546, 1–13. https://doi.org/10.1016/j.jhydrol.2017.01.005

    Article  Google Scholar 

  • GES DISC. (2021). GES DISC Documentation: GLDAS LSM Description. https://disc.gsfc.nasa.gov/information/documents?title=GLDAS%20LSM%20Description.

  • Getirana, A., Kumar, S., Girotto, M., & Rodell, M. (2017). Rivers and floodplains as key components of global terrestrial water storage variability. Geophysical Research Letters, 44(20), 10359–10368. https://doi.org/10.1002/2017GL074684

    Article  Google Scholar 

  • Haghtalab, N., Moore, N., & Ngongondo, C. (2019). Spatio-temporal analysis of rainfall variability and seasonality in Malawi. Regional Environmental Change, 19(7), 2041–2054. https://doi.org/10.1007/s10113-019-01535-2

    Article  Google Scholar 

  • Harmancioglu, N. B., & Altinbilek, D. (2020). Water resources of Turkey. Springer.

    Book  Google Scholar 

  • Hosseini-Moghari, S.-M., & Tang, Q. (2020). Validation of GPM IMERG V05 and V06 precipitation products over Iran. Journal of Hydrometeorology, 21(5), 1011–1037. https://doi.org/10.1175/JHM-D-19-0269.1

    Article  Google Scholar 

  • Hsu, J., Huang, W.-R., Liu, P.-Y., & Li, X. (2021). Validation of CHIRPS precipitation estimates over Taiwan at multiple timescales. Remote Sensing, 13(2), 254. https://doi.org/10.3390/rs13020254

    Article  Google Scholar 

  • Huffman, G. J., Bolvin, D. T., Braithwaite, D., Hsu, K., Joyce, R., Xie, P., & Yoo, S.-H. (2019). NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG). Algorithm Theoretical Basis Document (ATBD) Version, 4.

  • Huffman, G. J., Adler, R. F., Morrissey, M. M., Bolvin, D. T., Curtis, S., Joyce, R., McGavock, B., & Susskind, J. (2001). Global precipitation at one-degree daily resolution from multisatellite observations. Journal of Hydrometeorology, 2(1), 36–50.

    Article  Google Scholar 

  • Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu, G., Hong, Y., Bowman, K. P., & Stocker, E. F. (2007). The trmm multisatellite precipitation analysis (TMPA): Quasi-Global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8(1), 38–55. https://doi.org/10.1175/JHM560.1

    Article  Google Scholar 

  • Jia, Y., Lei, H., Yang, H., & Hu, Q. (2020). Terrestrial water storage change retrieved by GRACE and its implication in the Tibetan Plateau: Estimating areal precipitation in Ungauged Region. Remote Sensing, 12(19), 3129.

    Article  Google Scholar 

  • Jimenez, C., Prigent, C., Mueller, B., Seneviratne, S. I., McCabe, M. F., Wood, E. F., Rossow, W. B., Balsamo, G., Betts, A. K., & Dirmeyer, P. A. (2011). Global intercomparison of 12 land surface heat flux estimates. Journal of Geophysical Research: Atmospheres, 116(D2), 1–27.

    Article  Google Scholar 

  • Jung, H. C., Getirana, A., Arsenault, K. R., Holmes, T. R., & McNally, A. (2019). Uncertainties in evapotranspiration estimates over West Africa. Remote Sensing, 11(8), 892.

    Article  Google Scholar 

  • Katsanos, D., Retalis, A., & Michaelides, S. (2016). Validation of a high-resolution precipitation database (CHIRPS) over Cyprus for a 30-year period. Atmospheric Research, 169, 459–464. https://doi.org/10.1016/j.atmosres.2015.05.015

    Article  Google Scholar 

  • Kidd, C., Becker, A., Huffman, G. J., Muller, C. L., Joe, P., Skofronick-Jackson, G., & Kirschbaum, D. B. (2017). So, how much of the earth’s surface is covered by rain gauges? Bulletin of the American Meteorological Society, 98(1), 69–78. https://doi.org/10.1175/BAMS-D-14-00283.1

    Article  Google Scholar 

  • Kim, H. W., Hwang, K., Mu, Q., Lee, S. O., & Choi, M. (2012). Validation of MODIS 16 global terrestrial evapotranspiration products in various climates and land cover types in Asia. KSCE Journal of Civil Engineering, 16(2), 229–238.

    Article  Google Scholar 

  • Koster, R. D., Suarez, M. J., Ducharne, A., Stieglitz, M., & Kumar, P. (2000). A catchment-based approach to modeling land surface processes in a general circulation model 1 Model structure. Journal of Geophysical Research: Atmospheres, 105(D20), 24809–24822. https://doi.org/10.1029/2000JD900327

    Article  Google Scholar 

  • Lakshmi, V. (2016). Beyond GRACE: Using satellite data for groundwater investigations. Groundwater, 54(5), 615–618. https://doi.org/10.1111/gwat.12444

    Article  Google Scholar 

  • Lakshmi, V., Fayne, J., & Bolten, J. (2018). A comparative study of available water in the major river basins of the world. Journal of Hydrology, 567, 510–532.

    Article  Google Scholar 

  • Landerer, F. W., & Swenson, S. C. (2012). Accuracy of scaled GRACE terrestrial water storage estimates. Water Resources Research, 48(4), 1–11.

    Article  Google Scholar 

  • Le, H. M., Sutton, J. R., Bui, D. D., Bolten, J. D., & Lakshmi, V. (2018). Comparison and bias correction of TMPA precipitation products over the lower part of Red-Thai Binh River Basin of Vietnam. Remote Sensing, 10(10), 1582.

    Article  Google Scholar 

  • Li, B., Beaudoing, H., Rodell, M., & NASA/GSFC/HSL. (2020a). GLDAS Catchment Land Surface Model L4 monthly 1.0 x 1.0 degree V2.1, Greenbelt, Maryland, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC). https://doi.org/10.5067/FOUXNLXFAZNY.

  • Li, B., Beaudoing, H., Rodell, M., & NASA/GSFC/HSL. (2020b). GLDAS Noah Land Surface Model L4 monthly 0.25 x 0.25 degree V2.1, Greenbelt, Maryland, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC). https://doi.org/10.5067/SXAVCZFAQLNO.

  • Li, B., Rodell, M., Kumar, S., Beaudoing, H. K., Getirana, A., Zaitchik, B. F., de Goncalves, L. G., Cossetin, C., Bhanja, S., Mukherjee, A., Tian, S., Tangdamrongsub, N., Long, D., Nanteza, J., Lee, J., Policelli, F., Goni, I. B., Daira, D., Bila, M., Lannoy, G., Mocko, D., Steele‐Dunne, S. C., Save, H., & Bettadpur, S. (2019a). Global GRACE data assimilation for groundwater and drought monitoring: Advances and challenges. Water Resources Research, 55(9), 7564–7586. https://doi.org/10.1029/2018WR024618

    Article  Google Scholar 

  • Li, B., Rodell, M., Sheffield, J., Wood, E., & Sutanudjaja, E. (2019b). Long-term, non-anthropogenic groundwater storage changes simulated by three global-scale hydrological models. Scientific Reports, 9(1), 10746. https://doi.org/10.1038/s41598-019-47219-z

    Article  Google Scholar 

  • Li, H., Wigmosta, M. S., Wu, H., Huang, M., Ke, Y., Coleman, A. M., & Leung, L. R. (2013). A physically based runoff routing model for land surface and earth system models. Journal of Hydrometeorology, 14(3), 808–828. https://doi.org/10.1175/JHM-D-12-015.1

    Article  Google Scholar 

  • Li, W., Wang, W., Zhang, C., Wen, H., Zhong, Y., Zhu, Y., & Li, Z. (2019c). Bridging terrestrial water storage anomaly during gap using method: A case study in China. Sensors (Basel, Switzerland), 19(19), 4144. https://doi.org/10.3390/s19194144

    Article  Google Scholar 

  • Liang, X., Lettenmaier, D. P., & Wood, E. F. (1996). One-dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer variable infiltration capacity model. Journal of Geophysical Research: Atmospheres, 101(D16), 21403–21422. https://doi.org/10.1029/96JD01448

    Article  Google Scholar 

  • Liang, X., Lettenmaier, D. P., Wood, E. F., & Burges, S. J. (1994). A simple hydrologically based model of land surface water and energy fluxes for general circulation models. Journal of Geophysical Research: Atmospheres, 99(D7), 14415–14428. https://doi.org/10.1029/94JD00483

    Article  Google Scholar 

  • Liu, Z., Yao, Z., Wang, R., & Yu, G. (2020). Estimation of the Qinghai-Tibetan Plateau runoff and its contribution to large Asian rivers. Science of The Total Environment, 749, 141570. https://doi.org/10.1016/j.scitotenv.2020.141570

    Article  Google Scholar 

  • Lohmann, D., Mitchell, K. E., Houser, P. R., Wood, E. F., Schaake, J. C., Robock, A., Cosgrove, B. A., Sheffield, J., Duan, Q., Luo, L., Higgins, R. W., Pinker, R. T., & Tarpley, J. D. (2004). Streamflow and water balance intercomparisons of four land surface models in North American land data assimilation system project. Journal of Geophysical Research Atmospheres. https://doi.org/10.1029/2003JD003517

    Article  Google Scholar 

  • Long, D., Longuevergne, L., & Scanlon, B. R. (2014). Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites. Water Resources Research, 50(2), 1131–1151. https://doi.org/10.1002/2013WR014581

    Article  Google Scholar 

  • Long, D., Longuevergne, L., & Scanlon, B. R. (2015). Global analysis of approaches for deriving total water storage changes from GRACE satellites. Water Resources Research, 51(4), 2574–2594. https://doi.org/10.1002/2014WR016853

    Article  Google Scholar 

  • Luo, Y., Berbery, E. H., Mitchell, K. E., & Betts, A. K. (2007). Relationships between land surface and near-surface atmospheric variables in the NCEP North American regional reanalysis. Journal of Hydrometeorology, 8(6), 1184–1203. https://doi.org/10.1175/2007JHM844.1

    Article  Google Scholar 

  • Lv, M., Ma, Z., Yuan, X., Lv, M., Li, M., & Zheng, Z. (2017). Water budget closure based on GRACE measurements and reconstructed evapotranspiration using GLDAS and water use data for two large densely-populated mid-latitude basins. Journal of Hydrology, 547, 585–599. https://doi.org/10.1016/j.jhydrol.2017.02.027

    Article  Google Scholar 

  • MODIS Manual. (2021). Modis. https://modis.gsfc.nasa.gov/.

  • Moghim, S. (2018). Impact of climate variation on hydrometeorology in Iran. Global and Planetary Change, 170, 93–105.

    Article  Google Scholar 

  • Mohammed, I. N., Bolten, J. D., Srinivasan, R., & Lakshmi, V. (2018a). Improved hydrological decision support system for the Lower Mekong River Basin using satellite-based earth observations. Remote Sensing, 10(6), 885.

    Article  Google Scholar 

  • Mohammed, I. N., Bolten, J. D., Srinivasan, R., & Lakshmi, V. (2018b). Satellite observations and modeling to understand the Lower Mekong River Basin streamflow variability. Journal of Hydrology, 564, 559–573.

    Article  Google Scholar 

  • Mu, Q., Heinsch, F. A., Zhao, M., & Running, S. W. (2007). Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sensing of Environment, 111(4), 519–536. https://doi.org/10.1016/j.rse.2007.04.015

    Article  Google Scholar 

  • Mu, Q., Jones, L. A., Kimball, J. S., McDonald, K. C., & Running, S. W. (2009). Satellite assessment of land surface evapotranspiration for the pan-Arctic domain. Water Resources Research. https://doi.org/10.1029/2008WR007189

    Article  Google Scholar 

  • Mueller, B., Seneviratne, S. I., Jimenez, C., Corti, T., Hirschi, M., Balsamo, G., Ciais, P., Dirmeyer, P., Fisher, J. B., & Guo, Z. (2011). Evaluation of global observations‐based evapotranspiration datasets and IPCC AR4 simulations. Geophysical Research Letters, 38(6), 1–7.

    Article  Google Scholar 

  • Nicholson, S. E., Some, B., McCollum, J., Nelkin, E., Klotter, D., Berte, Y., Diallo, B. M., Gaye, I., Kpabeba, G., Ndiaye, O., Noukpozounkou, J. N., Tanu, M. M., Thiam, A., Toure, A. A., & Traore, A. K. (2003). Validation of and other rainfall estimates with a gauge dataset for west africa validation of rainfall products. Journal of Applied Meteorology and Climatology, 42(10), 1355–1368. https://doi.org/10.1175/1520-0450(2003)042%3c1355:VOTAOR%3e2.0.CO;2

    Article  Google Scholar 

  • Oliveira, P. T. S., Nearing, M. A., Moran, M. S., Goodrich, D. C., Wendland, E., & Gupta, H. V. (2014). Trends in water balance components across the Brazilian Cerrado. Water Resources Research, 50(9), 7100–7114. https://doi.org/10.1002/2013WR015202

    Article  Google Scholar 

  • Ouma, Y. O., Aballa, D. O., Marinda, D. O., Tateishi, R., & Hahn, M. (2015). Use of GRACE time-variable data and GLDAS-LSM for estimating groundwater storage variability at small basin scales: A case study of the Nzoia River Basin. International Journal of Remote Sensing, 36(22), 5707–5736. https://doi.org/10.1080/01431161.2015.1104743

    Article  Google Scholar 

  • Ozturk, D., & Sesli, F. A. (2015). Determination of temporal changes in the sinuosity and braiding characteristics of the Kizilirmak River Turkey. Polish Journal of Environmental Studies, 24(5), 2095–2112.

    Article  Google Scholar 

  • Pan, S., Pan, N., Tian, H., Friedlingstein, P., Sitch, S., Shi, H., Arora, V. K., Haverd, V., Jain, A. K., Kato, E., Lienert, S., Lombardozzi, D., Nabel, J. E. M. S., Ottlé, C., Poulter, B., Zaehle, S., & Running, S. W. (2020). Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling. Hydrology and Earth System Sciences, 24(3), 1485–1509. https://doi.org/10.5194/hess-24-1485-2020

    Article  Google Scholar 

  • Pan, Y., Zhang, C., Gong, H., Yeh, P.J.-F., Shen, Y., Guo, Y., Huang, Z., & Li, X. (2017). Detection of human-induced evapotranspiration using GRACE satellite observations in the Haihe River basin of China. Geophysical Research Letters, 44(1), 190–199. https://doi.org/10.1002/2016GL071287

    Article  Google Scholar 

  • Penatti, N. C., de Almeida, T. I. R., Ferreira, L. G., Arantes, A. E., & Coe, M. T. (2015). Satellite-based hydrological dynamics of the world’s largest continuous wetland. Remote Sensing of Environment, 170, 1–13. https://doi.org/10.1016/j.rse.2015.08.031

    Article  Google Scholar 

  • Qi, W., Liu, J., Yang, H., Zhu, X., Tian, Y., Jiang, X., Huang, X., & Feng, L. (2020). Large uncertainties in runoff estimations of GLDAS versions 2.0 and 2.1 in China. Earth and Space Science, 7(1), 0008. https://doi.org/10.1029/2019EA000829

    Article  Google Scholar 

  • Rodell, M., Chen, J., Kato, H., Famiglietti, J. S., Nigro, J., & Wilson, C. R. (2007). Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeology Journal, 15(1), 159–166. https://doi.org/10.1007/s10040-006-0103-7

    Article  Google Scholar 

  • Rodell, M., Houser, P. R., Jambor, U. E. A., Gottschalck, J., Mitchell, K., Meng, C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., & Bosilovich, M. (2004). The global land data assimilation system. Bulletin of the American Meteorological Society, 85(3), 381–394.

    Article  Google Scholar 

  • Rodell, M., McWilliams, E. B., Famiglietti, J. S., Beaudoing, H. K., & Nigro, J. (2011). Estimating evapotranspiration using an observation based terrestrial water budget. Hydrological Processes, 25(26), 4082–4092.

    Article  Google Scholar 

  • Rui, H., Beaudoing, H., & Loeser, C. (2020). README document for NASA GLDAS version 2 data products. In: goddart earth sciences data and information services center (GES DISC): Greenbelt. MD.

  • Running, S., Mu, Q., & Zhao, M. (2017). MOD16A2 MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC. EGU. 10.5067/MODIS/MOD16A2.006.

  • Rzepecka, Z., & Birylo, M. (2020). Groundwater storage changes derived from GRACE and GLDAS on smaller river basins—A CASE STUDY IN Poland. Geosciences, 10(4), 124.

    Article  Google Scholar 

  • Sahoo, A. K., Pan, M., Troy, T. J., Vinukollu, R. K., Sheffield, J., & Wood, E. F. (2011). Reconciling the global terrestrial water budget using satellite remote sensing. Remote Sensing of Environment, 115(8), 1850–1865. https://doi.org/10.1016/j.rse.2011.03.009

    Article  Google Scholar 

  • Schaake, J. C., Koren, V. I., Duan, Q.-Y., Mitchell, K., & Chen, F. (1996). Simple water balance model for estimating runoff at different spatial and temporal scales. Journal of Geophysical Research: Atmospheres, 101(D3), 7461–7475. https://doi.org/10.1029/95JD02892

    Article  Google Scholar 

  • Selek, B., & Aksu, H. (2020). Water resources potential of Turkey. In N. B. Harmancioglu & D. Altinbilek (Eds.), Water resources of Turkey (pp. 241–256). Springer.

    Chapter  Google Scholar 

  • Senay, G. B., Bohms, S., Singh, R. K., Gowda, P. H., Velpuri, N. M., Alemu, H., & Verdin, J. P. (2013). Operational evapotranspiration mapping using remote sensing and weather datasets: A new parameterization for the SSEB approach. JAWRA Journal of the American Water Resources Association, 49(3), 577–591. https://doi.org/10.1111/jawr.12057

    Article  Google Scholar 

  • Senay, G. B., Kagone, S., & Velpuri, N. M. (2020). Operational global actual evapotranspiration: Development, evaluation, and dissemination. Sensors, 20(7), 1915. https://doi.org/10.3390/s20071915

    Article  Google Scholar 

  • Sheffield, J., Ferguson, C. R., Troy, T. J., Wood, E. F., & McCabe, M. F. (2009). Closing the terrestrial water budget from satellite remote sensing. Geophysical Research Letters. https://doi.org/10.1029/2009GL037338

    Article  Google Scholar 

  • Sheffield, J., Goteti, G., & Wood, E. F. (2006). Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. Journal of Climate, 19(13), 3088–3111. https://doi.org/10.1175/JCLI3790.1

    Article  Google Scholar 

  • Shen, Z., Yong, B., Gourley, J. J., Qi, W., Lu, D., Liu, J., Ren, L., Hong, Y., & Zhang, J. (2020). Recent global performance of the climate hazards group infrared precipitation (CHIRP) with stations (CHIRPS). Journal of Hydrology, 591, 125284. https://doi.org/10.1016/j.jhydrol.2020.125284

    Article  Google Scholar 

  • Souza, V. A., Roberti, D. R., Ruhoff, A. L., Zimmer, T., Adamatti, D. S., de Gonçalves, L. G. G., Diaz, M. B., de Alves, R. C. M., & de Moraes, O. L. L. (2019). Evaluation of MOD16 algorithm over irrigated rice paddy using flux tower measurements in Southern Brazil. Water, 11(9), 1911. https://doi.org/10.3390/w11091911

    Article  Google Scholar 

  • Syed, T. H., Famiglietti, J. S., Rodell, M., Chen, J., & Wilson, C. R. (2008). Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resources Research. https://doi.org/10.1029/2006WR005779

    Article  Google Scholar 

  • Tang, G., Zeng, Z., Long, D., Guo, X., Yong, B., Zhang, W., & Hong, Y. (2016). Statistical and hydrological comparisons between TRMM and GPM Level-3 products over a Midlatitude Basin: Is Day-1 IMERG a good successor for TMPA 3B42V7? Journal of Hydrometeorology, 17(1), 121–137. https://doi.org/10.1175/JHM-D-15-0059.1

    Article  Google Scholar 

  • Tang, R., Shao, K., Li, Z.-L., Wu, H., Tang, B.-H., Zhou, G., & Zhang, L. (2015). Multiscale validation of the 8-day MOD16 evapotranspiration product using flux data collected in China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(4), 1478–1486. https://doi.org/10.1109/JSTARS.2015.2420105

    Article  Google Scholar 

  • Tapley, B. D., Bettadpur, S., Watkins, M., & Reigber, C. (2004). The gravity recovery and climate experiment: Mission overview and early results: GRACE mission overview and early results. Geophysical Research Letters. https://doi.org/10.1029/2004GL019920

    Article  Google Scholar 

  • Velpuri, N. M., Senay, G. B., Singh, R. K., Bohms, S., & Verdin, J. P. (2013). A comprehensive evaluation of two MODIS evapotranspiration products over the conterminous United States: Using point and gridded FLUXNET and water balance ET. Remote Sensing of Environment, 139, 35–49. https://doi.org/10.1016/j.rse.2013.07.013

    Article  Google Scholar 

  • Wang, F., Shen, Y., Chen, Q., & Wang, W. (2021). Bridging the gap between GRACE and GRACE follow-on monthly gravity field solutions using improved multichannel singular spectrum analysis. Journal of Hydrology, 594, 125972. https://doi.org/10.1016/j.jhydrol.2021.125972

    Article  Google Scholar 

  • Wang, H., Guan, H., Gutiérrez-Jurado, H. A., & Simmons, C. T. (2014). Examination of water budget using satellite products over Australia. Journal of Hydrology, 511, 546–554. https://doi.org/10.1016/j.jhydrol.2014.01.076

    Article  Google Scholar 

  • Wang, W., Cui, W., Wang, X., & Chen, X. (2016). Evaluation of GLDAS-1 and GLDAS-2 forcing data and noah model simulations over China at the monthly scale. Journal of Hydrometeorology, 17(11), 2815–2833. https://doi.org/10.1175/JHM-D-15-0191.1

    Article  Google Scholar 

  • Wartenburger, R., Seneviratne, S. I., Hirschi, M., Chang, J., Ciais, P., Deryng, D., Elliott, J., Folberth, C., Gosling, S. N., Gudmundsson, L., Henrot, A. J., Hickler, T., Ito, A., Khabarov, N., Kim, H., Leng, G., Liu, J., Liu, X., Masaki, Y., Zhou, T., et al. (2018). Evapotranspiration simulations in ISIMIP2a—Evaluation of spatio-temporal characteristics with a comprehensive ensemble of independent datasets. Environmental Research Letters, 13(7), 075001. https://doi.org/10.1088/1748-9326/aac4bb

    Article  Google Scholar 

  • Xia, Y., Mocko, D., Huang, M., Li, B., Rodell, M., Mitchell, K. E., Cai, X., & Ek, M. B. (2017). Comparison and assessment of three advanced land surface models in simulating terrestrial water storage components over the United States. Journal of Hydrometeorology, 18(3), 625–649.

    Article  Google Scholar 

  • Xiao, R., He, X., Zhang, Y., Ferreira, V. G., & Chang, L. (2015). Monitoring groundwater variations from satellite gravimetry and hydrological models: A comparison with in-situ measurements in the mid-atlantic region of the United States. Remote Sensing, 7(1), 686–703.

    Article  Google Scholar 

  • Xu, R., Tian, F., Yang, L., Hu, H., Lu, H., & Hou, A. (2017). Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high-density rain gauge network. Journal of Geophysical Research: Atmospheres, 122(2), 910–924. https://doi.org/10.1002/2016JD025418

    Article  Google Scholar 

  • Yao, Y., Liang, S., Li, X., Chen, J., Liu, S., Jia, K., Zhang, X., Xiao, Z., Fisher, J. B., Mu, Q., Pan, M., Liu, M., Cheng, J., Jiang, B., Xie, X., Grünwald, T., Bernhofer, C., & Roupsard, O. (2017). Improving global terrestrial evapotranspiration estimation using support vector machine by integrating three process-based algorithms. Agricultural and Forest Meteorology, 242, 55–74. https://doi.org/10.1016/j.agrformet.2017.04.011

    Article  Google Scholar 

  • Yin, W., Hu, L., Han, S.-C., Zhang, M., & Teng, Y. (2019). Reconstructing terrestrial water storage variations from 1980 to 2015 in the Beishan Area of China. Geofluids, 2019, e3874742. https://doi.org/10.1155/2019/3874742

    Article  Google Scholar 

  • Yüce, M. İ., & Ercan, B. (2015). Kızılırmak havzasi yağiş-akiş ilişkisinin belirlenmesi. 4. Su Yapıları Sempozyumu, 19–21.

  • Zaitchik, B. F., Rodell, M., & Olivera, F. (2010). Evaluation of the global land data assimilation system using global river discharge data and a source-to-sink routing scheme. Water Resources Research. https://doi.org/10.1029/2009WR007811

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National Aeronautics and Space Administration (NASA) and the United States Geological Survey (USGS) for providing satellite data and product instructions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emrah Pekkan.

Ethics declarations

Conflict of interest

The Authors declare that this manuscript is original, has not been published before and is not currently being considered for publication elsewhere and, confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

Consent to participate

All authors declare that they participated in the study and the development of the study.

Consent for publication

The authors give their consent for the article to be published in Journal of the Indian Society of Remote Sensing

Ethics approval

Authors agree and declare that this submission follows the policies of Springer as outlined in the Guide for Authors and in the Ethical Statement.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deliry, S.I., Pekkan, E. & Avdan, U. GIS-Based Water Budget Estimation of the Kizilirmak River Basin using GLDAS-2.1 Noah and CLSM Models and Remote Sensing Observations. J Indian Soc Remote Sens 50, 1191–1209 (2022). https://doi.org/10.1007/s12524-022-01522-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-022-01522-x

Keywords

Navigation