Skip to main content
Log in

Lifted collocation integrators for direct optimal control in ACADO toolkit

  • Full Length Paper
  • Published:
Mathematical Programming Computation Aims and scope Submit manuscript

Abstract

This paper presents a class of efficient Newton-type algorithms for solving the nonlinear programs (NLPs) arising from applying a direct collocation approach to continuous time optimal control. The idea is based on an implicit lifting technique including a condensing and expansion step, such that the structure of each subproblem corresponds to that of the multiple shooting method for direct optimal control. We establish the mathematical equivalence between the Newton iteration based on direct collocation and the proposed approach, and we discuss the computational advantages of a lifted collocation integrator. In addition, we investigate different inexact versions of the proposed scheme and study their convergence and computational properties. The presented algorithms are implemented as part of the open-source ACADO code generation software for embedded optimization. Their performance is illustrated on a benchmark case study of the optimal control for a chain of masses. Based on these results, the use of lifted collocation within direct multiple shooting allows for a computational speedup factor of about 10 compared to a standard collocation integrator and a factor in the range of 10–50 compared to direct collocation using a general-purpose sparse NLP solver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. ACADO Toolkit. http://www.acadotoolkit.org (2009–2016)

  2. HSL. A collection of Fortran codes for large scale scientific computation. http://www.hsl.rl.ac.uk (2011)

  3. ACADO Toolkit discussion. www.sourceforge.net/p/acado/discussion (2012–2016)

  4. Albersmeyer, J., Bock, H.: Sensitivity generation in an adaptive BDF-method. In: Modeling, Simulation and Optimization of Complex Processes: Proceedings of the International Conference on High Performance Scientific Computing, March 6–10, 2006, Hanoi, Vietnam, pp. 15–24. Springer (2008)

  5. Albersmeyer, J., Diehl, M.: The lifted Newton method and its application in optimization. SIAM J. Optim. 20(3), 1655–1684 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Albin, T., Ritter, D., Abel, D., Liberda, N., Quirynen, R., Diehl, M.: Nonlinear MPC for a two-stage turbocharged gasoline engine airpath. In: Proceedings of the IEEE Conference on Decision and Control (CDC), pp. 849–856 (2015)

  7. Andersson, J., Akesson, J., Diehl, M.: CasADi—a symbolic package for automatic differentiation and optimal control. In: Recent Advances in Algorithmic Differentiation, Lecture Notes in Computational Science and Engineering, vol. 87, pp. 297–307. Springer (2012)

  8. Bauer, I., Bock, H., Schlöder, J.: DAESOL—a BDF-code for the numerical solution of differential algebraic equations. Internal Report, IWR, SFB 359, University of Heidelberg (1999)

  9. Betts, J.: Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, 2nd edn. SIAM, Philadelphia (2010)

    Book  MATH  Google Scholar 

  10. Bickart, T.A.: An efficient solution process for implicit Runge–Kutta methods. SIAM J. Numer. Anal. 14(6), 1022–1027 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  11. Biegler, L.: Solution of dynamic optimization problems by successive quadratic programming and orthogonal collocation. Comput. Chem. Eng. 8(3–4), 243–248 (1984)

    Article  Google Scholar 

  12. Biegler, L., Zavala, V.: Large-scale nonlinear programming using IPOPT: an integrating framework for enterprise-wide dynamic optimization. Comput. Chem. Eng. 33(3), 575–582 (2009). Selected Papers from the 17th European Symposium on Computer Aided Process Engineering held in Bucharest, Romania, May 2007

  13. Biegler, L.T.: Nonlinear Programming, MOS-SIAM Series on Optimization. SIAM, Philadelphia (2010)

    Google Scholar 

  14. Bock, H.: Randwertproblemmethoden zur Parameteridentifizierung in Systemen nichtlinearer Differentialgleichungen, Bonner Mathematische Schriften, vol. 183. Universität Bonn, Bonn (1987)

    Google Scholar 

  15. Bock, H.G.: Numerical treatment of inverse problems in differential and integral equations. In: Progress in Scientific Computing, vol. 2, pp. 95–121. Birkhäuser, Boston (1983)

  16. Bock, H.G., Diehl, M., Kostina, E.A., Schlöder, J.P.: Constrained optimal feedback control of systems governed by large differential algebraic equations. In: Real-Time and Online PDE-Constrained Optimization, pp. 3–22. SIAM, Philadelphia (2007)

  17. Bock, H.G., Plitt, K.J.: A multiple shooting algorithm for direct solution of optimal control problems. In: Proceedings of the IFAC World Congress, pp. 242–247. Pergamon Press (1984)

  18. Boggs, P.T., Tolle, J.W.: Sequential quadratic programming. Acta Numer. 4, 1–51 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  19. Broyden, C.G.: Quasi-Newton methods and their application to function minimization. Math. Comput. 21, 368–381 (1967)

    Article  MATH  Google Scholar 

  20. Büskens, C., Maurer, H.: SQP-methods for solving optimal control problems with control and state constraints: adjoint variables, sensitivity analysis and real-time control. J. Comput. Appl. Math. 120(1–2), 85–108 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Butcher, J.: On the implementation of implicit Runge–Kutta methods. BIT Numer. Math. 16(3), 237–240 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  22. Cooper, G., Vignesvaran, R.: Some schemes for the implementation of implicit Runge–Kutta methods. J. Comput. Appl. Math. 45(1–2), 213–225 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  23. Curtis, F.E., Johnson, T.C., Robinson, D.P., Wächter, A.: An inexact sequential quadratic optimization algorithm for nonlinear optimization. SIAM J. Optim. 24(3), 1041–1074 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  24. Dembo, R., Eisenstat, S., Steihaug, T.: Inexact Newton methods. SIAM J. Numer. Anal. 19(2), 400–408 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  25. Dennis, J.E.: On Newton-like methods. Numer. Math. 11(4), 324–330 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  26. Deuflhard, P.: Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms, vol. 35. Springer, Berlin (2011)

    MATH  Google Scholar 

  27. Diehl, M.: Lecture Notes on Numerical Optimization. http://cdn.syscop.de/publications/Diehl2016.pdf (2016)

  28. Diehl, M., Bock, H.G., Schlöder, J., Findeisen, R., Nagy, Z., Allgöwer, F.: Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations. J. Process Control 12(4), 577–585 (2002)

    Article  Google Scholar 

  29. Diehl, M., Bock, H.G., Schlöder, J.P.: A real-time iteration scheme for nonlinear optimization in optimal feedback control. SIAM J. Control Optim. 43(5), 1714–1736 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  30. Diehl, M., Ferreau, H.J., Haverbeke, N.: Efficient numerical methods for nonlinear MPC and moving horizon estimation. In: Magni, L., Raimondo, M., Allgöwer, F. (eds.) Nonlinear Model Predictive Control, Lecture Notes in Control and Information Sciences, pp. 391–417. Springer, Berlin (2009)

    Chapter  Google Scholar 

  31. Diehl, M., Leineweber, D., Schäfer, A.: MUSCOD-II Users’ Manual. IWR-Preprint 2001–2025. University of Heidelberg (2001)

  32. Diehl, M., Walther, A., Bock, H.G., Kostina, E.: An adjoint-based SQP algorithm with Quasi-Newton Jacobian updates for inequality constrained optimization. Optim. Methods Softw. 25(4), 531–552 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  33. Domahidi, A., Perez, J.: FORCES professional. embotech GmbH. http://embotech.com/FORCES-Pro (2014)

  34. Fabien, B.: dsoa: the implementation of a dynamic system optimization algorithm. Optim. Control Appl. Methods 31, 231–247 (2010)

    MATH  MathSciNet  Google Scholar 

  35. Ferreau, H.J., Kirches, C., Potschka, A., Bock, H.G., Diehl, M.: qpOASES: a parametric active-set algorithm for quadratic programming. Math. Program. Comput. 6(4), 327–363 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  36. Frasch, J.V., Sager, S., Diehl, M.: A parallel quadratic programming method for dynamic optimization problems. Math. Program. Comput. 7(3), 289–329 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  37. Frison, G.: Algorithms and methods for high-performance model predictive control. Ph.D. thesis, Technical University of Denmark (DTU) (2015)

  38. Frison, G., Sorensen, H.B., Dammann, B., Jørgensen, J.B.: High-performance small-scale solvers for linear model predictive control. In: Proceedings of the European Control Conference (ECC), pp. 128–133 (2014)

  39. Gertz, E.M., Wright, S.J.: Object-oriented software for quadratic programming. ACM Trans. Math. Softw. 29(1), 58–81 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  40. González-Pinto, S., Montijano, J.I., Rández, L.: Iterative schemes for three-stage implicit Runge–Kutta methods. Appl. Numer. Math. 17(4), 363–382 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  41. Griewank, A.: Evaluating Derivatives, Principles and Techniques of Algorithmic Differentiation. No. 19 in Frontiers in Applied Mathematics. SIAM, Philadelphia (2000)

  42. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II—Stiff and Differential-Algebraic Problems, 2nd edn. Springer, Berlin (1991)

    MATH  Google Scholar 

  43. Hindmarsh, A., Brown, P., Grant, K., Lee, S., Serban, R., Shumaker, D., Woodward, C.: SUNDIALS: suite of nonlinear and differential/algebraic equation solvers. ACM Trans. Math. Softw. 31(3), 363–396 (2005)

    Article  MATH  Google Scholar 

  44. Hong, W., Wang, S., Li, P., Wozny, G., Biegler, L.: A quasi-sequential approach to large-scale dynamic optimization problems. AIChE J. 52(1), 255–268 (2006)

    Article  Google Scholar 

  45. Houska, B., Diehl, M.: A quadratically convergent inexact SQP method for optimal control of differential algebraic equations. Optim. Control Appl. Methods 34(4), 396–414 (2013)

    Article  MATH  Google Scholar 

  46. Houska, B., Ferreau, H.J., Diehl, M.: ACADO toolkit—an open source framework for automatic control and dynamic optimization. Optim. Control Appl. Methods 32(3), 298–312 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  47. Houska, B., Ferreau, H.J., Diehl, M.: An auto-generated real-time iteration algorithm for nonlinear MPC in the microsecond range. Automatica 47(10), 2279–2285 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  48. Kalmari, J., Backman, J., Visala, A.: A toolkit for nonlinear model predictive control using gradient projection and code generation. Control Eng. Pract. 39, 56–66 (2015)

    Article  Google Scholar 

  49. Kang, J., Cao, Y., Word, D.P., Laird, C.D.: An interior-point method for efficient solution of block-structured NLP problems using an implicit Schur-complement decomposition. Comput. Chem. Eng. 71, 563–573 (2014)

    Article  Google Scholar 

  50. Kirches, C., Wirsching, L., Sager, S., Bock, H.: Efficient numerics for nonlinear model predictive control. In: Recent Advances in Optimization and its Applications in Engineering, pp. 339–357. Springer (2010)

  51. Kouzoupis, D., Quirynen, R., Frasch, J.V., Diehl, M.: Block condensing for fast nonlinear MPC with the dual Newton strategy. In: Proceedings of the IFAC Conference on Nonlinear Model Predictive Control (NMPC), vol. 48, pp. 26–31 (2015)

  52. Leineweber, D., Schäfer, A., Bock, H., Schlöder, J.: An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization. Part II: software aspects and applications. Comput. Chem. Eng. 27, 167–174 (2003)

    Article  Google Scholar 

  53. Liu, F., Hager, W.W., Rao, A.V.: Adaptive mesh refinement method for optimal control using nonsmoothness detection and mesh size reduction. J. Frankl. Inst. 352(10), 4081–4106 (2015)

    Article  MathSciNet  Google Scholar 

  54. Mattingley, J., Wang, Y., Boyd, S.: Code generation for receding horizon control. In: Proceedings of the IEEE International Symposium on Computer-Aided Control System Design, pp. 985–992. Yokohama, Japan (2010)

  55. Mayne, D., Rawlings, J.: Model Predictive Control. Nob Hill Publishing, Madison, WI (2013)

    Google Scholar 

  56. Nocedal, J., Wright, S.J.: Numerical Optimization, Springer Series in Operations Research and Financial Engineering, 2nd edn. Springer, Berlin (2006)

    Google Scholar 

  57. Ohtsuka, T.: A continuation/GMRES method for fast computation of nonlinear receding horizon control. Automatica 40(4), 563–574 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  58. Ohtsuka, T., Kodama, A.: Automatic code generation system for nonlinear receding horizon control. Trans. Soc. Instrum. Control Eng. 38(7), 617–623 (2002)

    Article  Google Scholar 

  59. Patterson, M.A., Hager, W.W., Rao, A.V.: A ph mesh refinement method for optimal control. Optim. Control Appl. Methods 36(4), 398–421 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  60. Patterson, M.A., Rao, A.V.: GPOPS-II: a MATLAB software for solving multiple-phase optimal control problems using hp-adaptive gaussian quadrature collocation methods and sparse nonlinear programming. ACM Trans. Math. Softw. 41(1), 1–37 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  61. Potschka, A.: Handling Path Constraints in a Direct Multiple Shooting Method for Optimal Control Problems. Diplomarbeit, University of Heidelberg (2006)

  62. Potschka, A.: A direct method for the numerical solution of optimization problems with time-periodic PDE constraints. Ph.D. thesis, University of Heidelberg (2011)

  63. Pytlak, R.: Numerical Methods for Optimal Control Problems with State Constraints, Lecture Notes in Mathematics. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  64. Quirynen, R., Gros, S., Diehl, M.: Efficient NMPC for nonlinear models with linear subsystems. In: Proceedings of the IEEE Conference on Decision and Control (CDC), pp. 5101–5106 (2013)

  65. Quirynen, R., Gros, S., Diehl, M.: Inexact Newton based lifted implicit integrators for fast nonlinear MPC. In: Proceedings of the IFAC Conference on Nonlinear Model Predictive Control (NMPC), pp. 32–38 (2015)

  66. Quirynen, R., Gros, S., Diehl, M.: Lifted implicit integrators for direct optimal control. In: Proceedings of the IEEE Conference on Decision and Control (CDC), pp. 3212–3217 (2015)

  67. Quirynen, R., Gros, S., Diehl, M.: Inexact Newton-type optimization with iterated sensitivities. SIAM J. Optim. (accepted, preprint available at Optimization Online, 2016-06-5502) (2016)

  68. Quirynen, R., Houska, B., Diehl, M.: Symmetric hessian propagation for lifted collocation integrators in direct optimal control. In: Proceedings of the American Control Conference (ACC), pp. 1117–1123 (2016)

  69. Quirynen, R., Houska, B., Vallerio, M., Telen, D., Logist, F., Impe, J.V., Diehl, M.: Symmetric algorithmic differentiation based exact Hessian SQP method and software for economic MPC. In: Proceedings of the IEEE Conference on Decision and Control (CDC), pp. 2752–2757 (2014)

  70. Quirynen, R., Vukov, M., Zanon, M., Diehl, M.: Autogenerating microsecond solvers for nonlinear MPC: a tutorial using ACADO integrators. Optim. Control Appl. Methods 36, 685–704 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  71. Romanenko, A., Pedrosa, N., Leal, J., Santos, L.: Seminario de Aplicaciones Industriales de Control Avanzado, chap. A Linux Based Nonlinear Model Predictive Control Framework, pp. 229–236 (2007)

  72. Simon, L., Nagy, Z., Hungerbuehler, K.: Nonlinear Model Predictive Control, Lecture Notes in Control and Information Sciences, vol. 384, chap. Swelling Constrained Control of an Industrial Batch Reactor Using a Dedicated NMPC Environment: OptCon, pp. 531–539. Springer (2009)

  73. Tomlab Optimization: PROPT: Matlab Optimal Control Software (ODE,DAE). http://tomdyn.com (2009–2011)

  74. Vukov, M., Gros, S., Horn, G., Frison, G., Geebelen, K., Jørgensen, J.B., Swevers, J., Diehl, M.: Real-time nonlinear MPC and MHE for a large-scale mechatronic application. Control Eng. Pract. 45, 64–78 (2015)

    Article  Google Scholar 

  75. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  76. Wirsching, L., Bock, H.G., Diehl, M.: Fast NMPC of a chain of masses connected by springs. In: Proceedings of the IEEE International Conference on Control Applications, Munich, pp. 591–596 (2006)

  77. Word, D.P., Kang, J., Akesson, J., Laird, C.D.: Efficient parallel solution of large-scale nonlinear dynamic optimization problems. Comput. Optim. Appl. 59(3), 667–688 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  78. Zavala, V.M., Laird, C.D., Biegler, L.T.: Interior-point decomposition approaches for parallel solution of large-scale nonlinear parameter estimation problems. Chem. Eng. Sci. 63(19), 4834–4845 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rien Quirynen.

Additional information

The software that was reviewed as part of this submission has been issued the Digital Object Identifier doi:10.5281/zenodo.321691.

This research was supported by the EU via ERC-HIGHWIND (259 166), FP7-ITN-TEMPO (607 957), H2020-ITN-AWESCO (642 682) and by the DFG in context of the Research Unit FOR 2401. At the time of initial submission, the first author held a Ph.D. fellowship of the Research Foundation—Flanders (FWO) and he is currently affiliated with the Mitsubishi Electric Research Laboratories (MERL) in Cambridge, MA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quirynen, R., Gros, S., Houska, B. et al. Lifted collocation integrators for direct optimal control in ACADO toolkit. Math. Prog. Comp. 9, 527–571 (2017). https://doi.org/10.1007/s12532-017-0119-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12532-017-0119-0

Keywords

Mathematics Subject Classification

Navigation