Skip to main content
Log in

Computational Methods and Online Resources for Identification of piRNA-Related Molecules

  • Review
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

piRNAs are a class of small non-coding RNA molecules, which interact with the PIWI family and have many important and diverse biological functions. The present review is aimed to provide guidelines and contribute to piRNA research. We focused on the four types of identification models on piRNA-related molecules, including piRNA, piRNA cluster, piRNA target, and disease-related piRNA. We evaluated the types of tools for the identification of piRNAs based on five aspects: datasets, features, classifiers, performance, and usability. We found the precision of 2lpiRNApred was the highest in datasets of model organisms, piRNN had a better performance of datasets of non-model organisms, and 2L-piRNA had the fastest recognition speed of all tools. In addition, we presented an overview of piRNA databases. The databases were divided into six categories: basic annotation, comprehensive annotation, isoform, cluster, target, and disease. We found that piRNA data of non-model organisms, piRNA target data, and piRNA–disease-associated data should be strengthened. Our review might assist researchers in selecting appropriate tools or datasets for their studies, reveal potential problems and shed light on future bioinformatics studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kim VN (2006) Small RNAs just got bigger: Piwi-interacting RNAs (piRNAs) in mammalian testes. Genes Dev 20(15):1993–1997. https://doi.org/10.1101/gad.1456106

    Article  CAS  PubMed  Google Scholar 

  2. Morceau F, Chateauvieux S, Gaigneaux A, Dicato M, Diederich M (2013) Long and short non-coding RNAs as regulators of hematopoietic differentiation. Int J Mol Sci 14(7):14744–14770. https://doi.org/10.3390/ijms140714744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Grivna ST, Beyret E, Wang Z, Lin H (2006) A novel class of small RNAs in mouse spermatogenic cells. Genes Dev 20(13):1709–1714. https://doi.org/10.1101/gad.1434406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Iwasaki YW, Siomi MC, Siomi H (2015) PIWI-Interacting RNA: Its Biogenesis and Functions. Annu Rev Biochem 84:405–433. https://doi.org/10.1146/annurev-biochem-060614-034258

    Article  CAS  PubMed  Google Scholar 

  5. Yan Z, Hu HY, Jiang X, Maierhofer V, Neb E, He L, Hu Y, Hu H, Li N, Chen W (2011) Widespread expression of piRNA-like molecules in somatic tissues. Nucleic Acids Res 39(15):6596–6607. https://doi.org/10.1093/nar/gkr298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Martinez VD, Vucic EA, Thu KL, Hubaux R, Enfield KS, Pikor LA, Beckersantos DD, Brown CJ, Lam S, Lam WL (2015) Unique somatic and malignant expression patterns implicate PIWI-interacting RNAs in cancer-type specific biology. Sci Rep-Uk 5:10423. https://doi.org/10.1038/srep10423

    Article  Google Scholar 

  7. Houwing S, Kamminga LM, Berezikov E, Cronembold D, Girard A (2007) Van EH, Filippov DV, Blaser H, Raz E, Moens CB. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell 129(1):69–82. https://doi.org/10.1016/j.cell.2007.03.026

    Article  CAS  PubMed  Google Scholar 

  8. Ku H-Y, Gangaraju VK, Qi H, Liu N, Lin H (2016) Tudor-SN interacts with Piwi antagonistically in regulating spermatogenesis but synergistically in silencing transposons in drosophila. Plos Genetics 12(1):e1005813. https://doi.org/10.1371/journal.pgen.1005813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kiuchi T, Koga H, Kawamoto M, Shoji K, Sakai H, Arai Y, Ishihara G, Kawaoka S, Sugano S, Shimada T (2014) A single female-specific piRNA is the primary determiner of sex in the silkworm. Nature 509(7502):633–636. https://doi.org/10.1038/nature13315

    Article  CAS  PubMed  Google Scholar 

  10. Watanabe T, Cheng EC, Zhong M, Lin H (2015) Retrotransposons and pseudogenes regulate mRNAs and IncRNAs via the piRNA pathway in the germline. Genome Res 25(3):368–380. https://doi.org/10.1101/gr.180802.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang D, Tu S, Stubna M, Wu WS, Huang WC, Weng Z, Lee HC (2018) The piRNA targeting rules and the resistance to piRNA silencing in endogenous genes. Science 359(6375):587–592. https://doi.org/10.1126/science.aao2840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dana PM, Mansournia MA, Mirhashemi SM (2020) PIWI-interacting RNAs: new biomarkers for diagnosis and treatment of breast cancer. Cell Biosci 10:1. https://doi.org/10.1186/s13578-020-00403-5

    Article  CAS  Google Scholar 

  13. Cabral GF, Pinheiro JAD, Vidal AF, Santos S, Ribeiro-dos-Santos A (2020) piRNAs in gastric cancer: a new approach towards translational research. Int J Mol Sci 21(6):2126. https://doi.org/10.3390/ijms21062126

    Article  CAS  Google Scholar 

  14. Xu JM, Yang X, Zhou Q, Zhuang J, Han SW (2020) Biological significance of piRNA in liver cancer: a review. Biomarkers 25(6):436–440. https://doi.org/10.1080/1354750X.2020.1794041

    Article  CAS  PubMed  Google Scholar 

  15. Chen H, Xu ZY, Liu DL (2019) Small non-coding RNA and colorectal cancer. J Cell Mol Med 23(5):3050–3057. https://doi.org/10.1111/jcmm.14209

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cheng J, Deng H, Xiao B, Zhou H, Zhou F, Shen Z, Guo J (2012) piR-823, a novel non-coding small RNA, demonstrates in vitro and in vivo tumor suppressive activity in human gastric cancer cells. Cancer Lett 315(1):12–17. https://doi.org/10.1016/j.canlet.2011.10.004

    Article  CAS  PubMed  Google Scholar 

  17. Iliev R, Fedorko M, Machackova T, Mlcochova H, Svoboda M, Pacik D, Dolezel J, Stanik M, Slaby O (2016) Expression Levels of PIWI-interacting RNA, piR-823, are deregulated in tumor tissue, blood serum and urine of patients with renal cell carcinoma. Anticancer Res 36(12):6419–6423. https://doi.org/10.21873/anticanres.11239

    Article  CAS  PubMed  Google Scholar 

  18. Yin J, Jiang XY, Qi W, Ji CG, Xie XL, Zhang DX, Cui ZJ, Wang CK, Bai Y, Wang J et al (2017) piR-823 contributes to colorectal tumorigenesis by enhancing the transcriptional activity of HSF1. Cancer Sci 108(9):1746–1756. https://doi.org/10.1111/cas.13300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tang X, Xie X, Wang X, Wang Y, Jiang X, Jiang H (2018) The combination of piR-823 and eukaryotic initiation factor 3 B (EIF3B) activates hepatic stellate cells via upregulating TGF-beta1 in liver fibrogenesis. Med Sci Monit 24:9151–9165. https://doi.org/10.12659/MSM.914222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Su JF, Zhao F, Gao ZW, Hou YJ, Li YY, Duan LJ, Lun SM, Yang HJ, Li JK, Dai NT et al (2020) piR-823 demonstrates tumor oncogenic activity in esophageal squamous cell carcinoma through DNA methylation induction via DNA methyltransferase 3B. Pathol Res Pract 216(4):152848. https://doi.org/10.1016/j.prp.2020.152848

    Article  CAS  PubMed  Google Scholar 

  21. Zuo Y, Zou Q, Lin J, Jiang M, Liu X (2020) 2lpiRNApred: a two-layered integrated algorithm for identifying piRNAs and their functions based on LFE-GM feature selection. RNA Biol 17(6):892–902. https://doi.org/10.1080/15476286.2020.1734382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang K, Hoeksema J, Liang C (2018) piRNN: deep learning algorithm for piRNA prediction. PeerJ 6:e5429. https://doi.org/10.7717/peerj.5429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu B, Yang F, Chou KC (2017) 2L-piRNA: a two-layer ensemble classifier for identifying Piwi-interacting RNAs and their function. Mol Ther Nucleic Acids 7:267–277. https://doi.org/10.1016/j.omtn.2017.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee EJ, Banerjee S, Zhou H, Jammalamadaka A, Arcila M, Manjunath BS, Kosik KS (2011) Identification of piRNAs in the central nervous system. RNA 17(6):1090–1099. https://doi.org/10.1261/rna.2565011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Freedman JE, Gerstein M, Mick E, Rozowsky J, Levy D, Kitchen R, Das S, Shah R, Danielson K, Beaulieu L (2016) Corrigendum: diverse human extracellular RNAs are widely detected in human plasma. Nat Commun 7:11902. https://doi.org/10.1038/ncomms11902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nishibu T, Hayashida Y, Tani S, Kurono S, Kojima-Kita K, Ukekawa R, Kurokawa T, Kuramochi-Miyagawa S, Nakano T, Inoue K et al (2012) Identification of MIWI-associated Poly(A) RNAs by immunoprecipitation with an anti-MIWI monoclonal antibody. Bioscience trends 6(5):248–261. https://doi.org/10.5582/bst.2012.v6.5.248

    Article  CAS  PubMed  Google Scholar 

  27. Yin H, Lin H (2007) An epigenetic activation role of Piwi and a Piwi-associated piRNA in Drosophila melanogaster. Nature 450(7167):304–308. https://doi.org/10.1038/nature06263

    Article  CAS  PubMed  Google Scholar 

  28. Chen C-C, Qian X, Yoon B-J (2017) Effective computational detection of piRNAs using n-gram models and support vector machine. BMC Bioinf 18(14):517. https://doi.org/10.1186/s12859-017-1896-1

    Article  CAS  Google Scholar 

  29. Wan C, Gao J, Zhang H, Jiang X, Zang Q, Ban R, Zhang Y, Shi Q (2017) CPSS 2.0: a computational platform update for the analysis of small RNA sequencing data. Bioinformatics 33(20):3289–3291. https://doi.org/10.1093/bioinformatics/btx066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang H, Ali A, Gao J, Ban R, Jiang X, Zhang Y, Shi Q (2018) IsopiRBank: a research resource for tracking piRNA isoforms. Database 2018:59. https://doi.org/10.1093/database/bay059

    Article  Google Scholar 

  31. Kai W, Liang C, Liu J, Xiao H, Huang S, Xu J, Fei L (2014) Prediction of piRNAs using transposon interaction and a support vector machine. BMC Bioinf 15(1):419. https://doi.org/10.1186/s12859-014-0419-6

    Article  CAS  Google Scholar 

  32. Li D, Luo L, Zhang W, Liu F, Luo F (2016) A genetic algorithm-based weighted ensemble method for predicting transposon-derived piRNAs. BMC Bioinf 17(1):329. https://doi.org/10.1186/s12859-016-1206-3

    Article  Google Scholar 

  33. Luo L, Li D, Zhang W, Tu S, Tian G (2016) Accurate prediction of transposon-derived piRNAs by integrating various sequential and physicochemical features. PloS ONE 11(4):e0153268. https://doi.org/10.1371/journal.pone.0153268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li TY, Gao MY, Song RY, Yin Q, Chen Y (2018) Support vector machine classifier for accurate identification of piRNA. Appl Sci-Basel 8(11):2204. https://doi.org/10.3390/app8112204

    Article  CAS  Google Scholar 

  35. Khan S, Khan M, Iqbal N, Hussain T, Khan SA, Chou KC (2020) A two-level computation model based on deep learning algorithm for identification of piRNA and their functions via Chou’s 5-steps rule. Int J Pept Res Ther 26(2):795–809. https://doi.org/10.1007/s10989-019-09887-3

    Article  CAS  Google Scholar 

  36. Chou KC (2011) Some remarks on protein attribute prediction and pseudo amino acid composition. J Theor Biol 273(1):236–247. https://doi.org/10.1016/j.jtbi.2010.12.024

    Article  CAS  PubMed  Google Scholar 

  37. Sai LS, Shipra A (2008) piRNABank: a web resource on classified and clustered Piwi-interacting RNAs. Nucleic Acids Res 36:D173–D177. https://doi.org/10.1093/nar/gkm696

    Article  CAS  Google Scholar 

  38. Fang S, Zhang L, Guo J, Niu Y, Wu Y, Li H, Zhao L, Li X, Teng X, Sun X et al (2018) NONCODEV5: a comprehensive annotation database for long non-coding RNAs. Nucleic Acids Res 46(D1):D308–D314. https://doi.org/10.1093/nar/gkx1107

    Article  CAS  PubMed  Google Scholar 

  39. Zhang P, Si X, Skogerbø G, Wang J, Cui D, Li Y, Sun X, Liu L, Sun B, Chen R (2014) piRBase: a web resource assisting piRNA functional study. Database J Biol Datab Curat 2014:110. https://doi.org/10.1093/database/bau110

    Article  CAS  Google Scholar 

  40. Wang J, Zhang P, Lu Y, Li Y, Zheng Y, Kan Y, Chen R, He S (2019) piRBase: a comprehensive database of piRNA sequences. Nucleic Acids Res 47(D1):D175–D180. https://doi.org/10.1093/nar/gky1043

    Article  CAS  PubMed  Google Scholar 

  41. Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) miRBase: from microRNA sequences to function. Nucleic Acids Res 47(D1):D155–D162. https://doi.org/10.1093/nar/gky1141

    Article  CAS  PubMed  Google Scholar 

  42. Chan PP, Lowe TM (2009) GtRNAdb: a database of transfer RNA genes detected in genomic sequence. Nucleic acids research 37:D93–D97. https://doi.org/10.1093/nar/gkn787

    Article  CAS  PubMed  Google Scholar 

  43. Zhang Y, Wang X, Kang L (2011) A k-mer scheme to predict piRNAs and characterize locust piRNAs. Bioinformatics 27(6):771–776. https://doi.org/10.1093/bioinformatics/btr016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Monga I, Banerjee I (2019) Computational identification of piRNAs using features based on RNA sequence, structure, thermodynamic and physicochemical properties. Curr Genom 20(7):508–518. https://doi.org/10.2174/1389202920666191129112705

    Article  CAS  Google Scholar 

  45. Pian C, Chen YY, Zhang J, Chen Z, Zhang GL, Li Q, Yang T, Zhang LY (2017) V-ELMpiRNAPred: Identification of human piRNAs by the voting-based extreme learning machine (V-ELM) with a new hybrid feature. J Bioinform Comput Biol 15(1):1650046. https://doi.org/10.1142/S0219720016500463

    Article  CAS  PubMed  Google Scholar 

  46. Jiang H, Wong WH (2008) SeqMap: mapping massive amount of oligonucleotides to the genome. Bioinformatics 24(20):2395–2396. https://doi.org/10.1093/bioinformatics/btn429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang H, Zhong J, Chai Z, Zhu J, Xin J (2018) Comparative expression profile of microRNAs and piRNAs in three ruminant species testes using next-generation sequencing. Reprod Domest Anim 53(4):963–970. https://doi.org/10.1111/rda.13195

    Article  CAS  PubMed  Google Scholar 

  48. Li A, Zhang J, Zhou Z, Wang L, Liu Y, Liu Y (2015) ALDB: a domestic-animal long noncoding RNA database. PloS ONE 10(4):e0124003. https://doi.org/10.1371/journal.pone.0124003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cheng Y, Wang Q, Jiang W, Bian YH, Zhou Y, Gou AX, Zhang WL, Fu K, Shi WH (2019) Emerging roles of piRNAs in cancer: challenges and prospects. Aging-Us 11(21):9932–9946. https://doi.org/10.18632/aging.102417

    Article  CAS  Google Scholar 

  50. Li A, Zhang J, Zhou Z (2014) PLEK: a tool for predicting long non-coding RNAs and messenger RNAs based on an improved k-mer scheme. BMC Bioinf 15(1):311. https://doi.org/10.1186/1471-2105-15-311

    Article  CAS  Google Scholar 

  51. Betel D, Sheridan R, Marks DS, Sander C (2007) Computational analysis of mouse piRNA sequence and biogenesis. Plos Comput Biol 3(11):e222. https://doi.org/10.1371/journal.pcbi.0030222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Vagin VV, Sigova A, Li C, Seitz H, Gvozdev V, Zamore PD (2006) A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313(5785):320–324. https://doi.org/10.1126/science.1129333

    Article  CAS  PubMed  Google Scholar 

  53. Saito K, Nishida KM, Mori T, Kawamura Y, Miyoshi K, Nagami T, Siomi H, Siomi MC (2006) Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev 20(16):2214–2222. https://doi.org/10.1101/gad.1454806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gunawardane LS, Saito K, Nishida KM, Miyoshi K, Kawamura Y, Nagami T, Siomi H, Siomi MC (2007) A slicer-mediated mechanism for repeat-associated siRNA 5’ end formation in Drosophila. Science 315(5818):1587–1590. https://doi.org/10.1126/science.1140494

    Article  CAS  PubMed  Google Scholar 

  55. Trost B, Kusalik A (2013) Computational phosphorylation site prediction in plants using random forests and organism-specific instance weights. Bioinformatics 29(6):686–694. https://doi.org/10.1093/bioinformatics/btt031

    Article  CAS  PubMed  Google Scholar 

  56. Brayet J, Zehraoui F, Jeansonleh L, Israeli D, Tahi F (2014) Towards a piRNA prediction using multiple kernel fusion and support vector machine. Bioinformatics 30(17):i364-370. https://doi.org/10.1093/bioinformatics/btu441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Boucheham A, Sommard V, Zehraoui F, Boualem A, Batouche M, Bendahmane A, Israeli D, Tahi F (2017) IpiRId: Integrative approach for piRNA prediction using genomic and epigenomic data. PloS one 12(6):e0179787. https://doi.org/10.1371/journal.pone.0179787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intellig Syst Technol 2(3):1–27. https://doi.org/10.1145/1961189.1961199

    Article  Google Scholar 

  59. Joachims T (2002) Learning to classify text using support vector machines. Text Classif 5:7–33. https://doi.org/10.1007/978-1-4615-0907-3

    Article  Google Scholar 

  60. Hall M, Frank E, Holmes G, Pfahringer B, Witten IH (2008) The WEKA data mining software: an update. ACM SIGKDD Explor Newslett 11(1):10–18. https://doi.org/10.1145/1656274.1656278

    Article  Google Scholar 

  61. Cao JW, Lin ZP, Huang GB, Liu N (2012) Voting based extreme learning machine. Inform Sci 185(1):66–77. https://doi.org/10.1016/j.ins.2011.09.015

    Article  Google Scholar 

  62. Choudhuri S (2009) Lesser known relatives of miRNA. Biochem Biophys Res Commun 388(2):177–180. https://doi.org/10.1016/j.bbrc.2009.08.039

    Article  CAS  PubMed  Google Scholar 

  63. Aravin A, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P, Iovino N, Morris P, Brownstein MJ, Kuramochi-Miyagawa S, Nakano T et al (2006) A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442(7099):203–207. https://doi.org/10.1038/nature04916

    Article  CAS  PubMed  Google Scholar 

  64. Girard A, Sachidanandam R, Hannon GJ, Carmell MA (2006) A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442(7099):199–202. https://doi.org/10.1038/nature04917

    Article  PubMed  Google Scholar 

  65. Lau NC, Seto AG, Kim J, Kuramochi-Miyagawa S, Nakano T, Bartel DP, Kingston RE (2006) Characterization of the piRNA complex from rat testes. Science 313(5785):363–367. https://doi.org/10.1126/science.1130164

    Article  CAS  PubMed  Google Scholar 

  66. Grivna ST, Pyhtila B, Lin H (2006) MIWI associates with translational machinery and PIWI-interacting RNAs (piRNAs) in regulating spermatogenesis. Proc Natl Acad Sci USA 103(36):13415–13420. https://doi.org/10.1073/pnas.0605506103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wei C, Salichos L, Wittgrove CM, Rokas A, Patton JG (2012) Transcriptome-wide analysis of small RNA expression in early zebrafish development. RNA 18(5):915–929. https://doi.org/10.1261/rna.029090.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rosenkranz D, Zischler H (2012) proTRAC - a software for probabilistic piRNA cluster detection, visualization and analysis. BMC Bioinf 13(1):5. https://doi.org/10.1186/1471-2105-13-5

    Article  Google Scholar 

  69. Jung I, Park JC, Kim S (2014) piClust: a density based piRNA clustering algorithm. Comput Biol Chem 50:60–67. https://doi.org/10.1016/j.compbiolchem.2014.01.008

    Article  CAS  PubMed  Google Scholar 

  70. Ray R, Pandey P (2018) piRNA analysis framework from small RNA-Seq data by a novel cluster prediction tool—PILFER. Genomics 110(6):355–365. https://doi.org/10.1016/j.ygeno.2017.12.005

    Article  CAS  PubMed  Google Scholar 

  71. Schreiner P, Atkinson PW (2017) piClusterBusteR: software for automated classification and characterization of piRNA cluster loci. BioRxiv 5:133009. https://doi.org/10.1101/133009

    Article  CAS  Google Scholar 

  72. Weick EM, Miska EA (2014) piRNAs: from biogenesis to function. Development 141(18):3458–3471. https://doi.org/10.1242/dev.094037

    Article  CAS  PubMed  Google Scholar 

  73. Gou LT, Dai P, Yang JH, Xue YC, Hu YP, Zhou Y, Kang JY, Wang X, Li HR, Hua MM et al (2014) Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis. Cell Res 24(6):680–700. https://doi.org/10.1038/cr.2014.41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhang P, Kang JY, Gou LT, Wang JJ, Xue YC, Skogerboe G, Dai P, Huang DW, Chen RS, Fu XD et al (2015) MIWI and piRNA-mediated cleavage of messenger RNAs in mouse testes. Cell Res 25(2):193–207. https://doi.org/10.1038/cr.2015.4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Goh WSS, Falciatori I, Tam OH, Burgess R, Meikar O, Kotaja N, Hammell M, Hannon GJ (2015) piRNA-directed cleavage of meiotic transcripts regulates spermatogenesis. Genes Dev 29(10):1032–1044. https://doi.org/10.1101/gad.260455.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human MicroRNA targets. PLoS Biol 2(11):e363. https://doi.org/10.1371/journal.pbio.0020363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yuan J, Zhang P, Cui Y, Wang JJ, Skogerbo G, Huang DW, Chen RS, He SM (2016) Computational identification of piRNA targets on mouse mRNAs. Bioinformatics 32(8):1170–1177. https://doi.org/10.1093/bioinformatics/btv729

    Article  CAS  PubMed  Google Scholar 

  78. Wu WS, Huang WC, Brown JS, Zhang D, Song X, Chen H, Tu S, Weng Z, Lee HC (2018) pirScan: a webserver to predict piRNA targeting sites and to avoid transgene silencing in C. elegans. Nucleic Acids Res 46(W1):W43–W48. https://doi.org/10.1093/nar/gky277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. piRNAdb https://www.pirnadb.org/

  80. Li F, Orban R, Baker B (2012) SoMART: a web server for plant miRNA, tasiRNA and target gene analysis. Plant J 70(5):891–901. https://doi.org/10.1111/j.1365-313X.2012.04922.x

    Article  CAS  PubMed  Google Scholar 

  81. Cui L, Lou YR, Zhang XJ, Zhou H, Deng HX, Song HJ, Yu XC, Xiao BX, Wang WH, Guo JM (2011) Detection of circulating tumor cells in peripheral blood from patients with gastric cancer using piRNAs as markers. Clin Biochem 44(13):1050–1057. https://doi.org/10.1016/j.clinbiochem.2011.06.004

    Article  CAS  PubMed  Google Scholar 

  82. Law PTY, Qin H, Ching AKK, Lai KP, Co NN, He M, Lung RWM, Chan AWH, Chan TF, Wong N (2013) Deep sequencing of small RNA transcriptome reveals novel non-coding RNAs in hepatocellular carcinoma. Journal of Hepatology 58(6):1165–1173. https://doi.org/10.1016/j.jhep.2013.01.032

    Article  CAS  PubMed  Google Scholar 

  83. Yan H, Wu QL, Sun CY, Ai LS, Deng J, Zhang L, Chen L, Chu ZB, Tang B, Wang K et al (2015) piRNA-823 contributes to tumorigenesis by regulating de novo DNA methylation and angiogenesis in multiple myeloma. Leukemia 29(1):196–206. https://doi.org/10.1038/leu.2014.135

    Article  CAS  PubMed  Google Scholar 

  84. Liu YJ, Zhang JY, Li AM, Zhang YY, Li YY, Yuan XG, He ZZ, Liu ZW, Tuo SH (2019) Identification of PIWI-interacting RNA modules by weighted correlation network analysis. Cluster Computing-the Journal of Networks Software Tools and Applications 22:707–717. https://doi.org/10.1007/s10586-017-1194-8

    Article  Google Scholar 

  85. Zuo YL, Liang Y, Zhang JT, Hao YY, Li ML, Wen ZN, Zhao Y (2019) Transcriptome analysis identifies Piwi-interacting RNAs as prognostic markers for recurrence of prostate cancer. Front Genet 10:1018. https://doi.org/10.3389/fgene.2019.01018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chu HY, Xia LP, Qiu XN, Gu DY, Zhu LJ, Jin J, Hui GY, Hua QH, Du ML, Tong N et al (2015) Genetic variants in noncoding PIWI-interacting RNA and colorectal cancer risk. Cancer-Am Cancer Soc 121(12):2044–2052. https://doi.org/10.1002/cncr.29314

    Article  CAS  Google Scholar 

  87. Roy J, Anand K, Mohapatra S, Nayak R, Chattopadhyay T, Mallick B (2020) Single nucleotide polymorphisms in piRNA-pathway genes: an insight into genetic determinants of human diseases. Mol Genet Genom 295(1):1–12. https://doi.org/10.1007/s00438-019-01612-5

    Article  CAS  Google Scholar 

  88. Zhang WK, Liu HL, Yin JY, Wu WT, Zhu DK, Amos CI, Fang SY, Lee JE, Li Y, Han JL et al (2016) Genetic variants in the PIWI-piRNA pathway gene DCP1A predict melanoma disease-specific survival. Int J Cancer 139(12):2730–2737. https://doi.org/10.1002/ijc.30409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Juan P, Tosar C, Rovira A (2003) Cayota: Non-coding RNA fragments account for the majority of annotated piRNAs expressed in somatic non-gonadal tissues. Commun Biol 1:2–2. https://doi.org/10.1038/s42003-017-0001-7

    Article  CAS  Google Scholar 

  90. Sarkar A, Maji RK, Saha S, Ghosh Z (2014) piRNAQuest: searching the piRNAome for silencers. BMC Genom 15(1):555. https://doi.org/10.1186/1471-2164-15-555

    Article  CAS  Google Scholar 

  91. Jiang BR, Wu WY, Chien CH, Tsai JJP, Chan WL (2016) piRNAtarget: The integrated database for mining functionality of piRNA and its targets. IEEE 7:382–386. https://doi.org/10.1109/BIBE.2016.64

    Article  Google Scholar 

  92. Wu WS, Brown JS, Chen TT, Chu YH, Huang WC, Tu S, Lee HC (2019) piRTarBase: a database of piRNA targeting sites and their roles in gene regulation. Nucleic Acids Res 47(D1):D181–D187. https://doi.org/10.1093/nar/gky956

    Article  CAS  PubMed  Google Scholar 

  93. David R (2016) piRNA cluster database: a web resource for piRNA producing loci. Nucleic Acids Res 44:D223–D230. https://doi.org/10.1093/nar/gkv1265

    Article  CAS  Google Scholar 

  94. Muhammad A, Waheed R, Khan NA, Jiang H, Song X (2019) piRDisease v1.0: a manually curated database for piRNA associated diseases. Database 58:52. https://doi.org/10.1093/database/baz052

    Article  CAS  Google Scholar 

  95. Bateman A, Agrawal S, Birney E, Bruford EA, Bujnicki JM, Cochrane G, Cole JR, Dinger ME, Enright AJ, Gardner PP et al (2011) RNAcentral: a vision for an international database of RNA sequences. RNA 17(11):1941–1946. https://doi.org/10.1261/rna.2750811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Consortium RN, Petrov AI, Kay SJE, Gibson R, Kulesha E, Staines D, Bruford EA, Wright MW, Burge S, Finn RD et al (2015) RNAcentral: an international database of ncRNA sequences. Nucleic Acids Res 43:D123-129. https://doi.org/10.1093/nar/gku991

    Article  CAS  Google Scholar 

  97. The RC, Petrov AI, Kay SJE, Kalvari I, Howe KL, Gray KA, Bruford EA, Kersey PJ, Cochrane G, Finn RD et al (2017) RNAcentral: a comprehensive database of non-coding RNA sequences. Nucleic Acids Res 45(D1):D128–D134. https://doi.org/10.1093/nar/gkw1008

    Article  CAS  Google Scholar 

  98. The RC (2019) RNAcentral: a hub of information for non-coding RNA sequences. Nucleic Acids Res 47(D1):D221–D229. https://doi.org/10.1093/nar/gky1034

    Article  CAS  Google Scholar 

  99. Denisenko E, Ho D, Tamgue O, Ozturk M, Suzuki H, Brombacher F, Guler R, Schmeier S (2016) IRNdb: the database of immunologically relevant non-coding RNAs. Database 47:138. https://doi.org/10.1093/database/baw138

    Article  Google Scholar 

  100. Yang JH, Shao P, Zhou H, Chen YQ, Qu LH (2010) deepBase: a database for deeply annotating and mining deep sequencing data. Nucleic Acids Res 38:D123-130. https://doi.org/10.1093/nar/gkp943

    Article  CAS  PubMed  Google Scholar 

  101. Yang JH, Qu LH (2012) DeepBase: annotation and discovery of microRNAs and other noncoding RNAs from deep-sequencing data. Methods Mol Biol 822:233–248. https://doi.org/10.1007/978-1-61779-427-8_16

    Article  CAS  PubMed  Google Scholar 

  102. Zheng LL, Li JH, Wu J, Sun WJ, Liu S, Wang ZL, Zhou H, Yang JH, Qu LH (2016) deepBase v2.0: identification, expression, evolution and function of small RNAs, LncRNAs and circular RNAs from deep-sequencing data. Nucleic Acids Res 44(D1):D196-202. https://doi.org/10.1093/nar/gkv1273

    Article  CAS  PubMed  Google Scholar 

  103. Zuo Z, Hu H, Xu Q, Luo X, Peng D, Zhu K, Zhao Q, Xie Y, Ren J (2020) BBCancer: an expression atlas of blood-based biomarkers in the early diagnosis of cancers. Nucleic Acids Res 48(D1):D789–D796. https://doi.org/10.1093/nar/gkz942

    Article  CAS  PubMed  Google Scholar 

  104. Zhang W, Yao G, Wang J, Yang M, Wang J, Zhang H, Li W (2020) ncRPheno: a comprehensive database platform for identification and validation of disease related noncoding RNAs. RNA Biol 17(7):943–955. https://doi.org/10.1080/15476286.2020.1737441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cui TY, Zhang L, Huang Y, Yi Y, Tan PW, Zhao Y, Hu YF, Xu LY, Li EM, Wang D (2018) MNDR v2.0: an updated resource of ncRNA-disease associations in mammals. Nucleic Acids Res 46(D1):D371–D374. https://doi.org/10.1093/nar/gkx1025

    Article  CAS  PubMed  Google Scholar 

  106. Harrison PW, Alako B, Amid C, Cerdeno-Tarraga A, Cleland I, Holt S, Hussein A, Jayathilaka S, Kay S, Keane T et al (2019) The European nucleotide archive in 2018. Nucleic Acids Res 47(D1):D84–D88. https://doi.org/10.1093/nar/gky1078

    Article  CAS  PubMed  Google Scholar 

  107. Yao Y (2014) Prediction and analysis of small RNA during zebrafish early developmental stages. Huazhong University of Science and Technology, Doctor

    Google Scholar 

  108. Liu X, Ding J, Gong F (2014) piRNA identification based on motif discovery. Mol bioSyst 10(12):3075–3080. https://doi.org/10.1039/c4mb00447g

    Article  CAS  PubMed  Google Scholar 

  109. Menor MS, Baek K, Poisson G (2015) Prediction of mature microRNA and piwi-interacting RNA without a genome reference or precursors. Int J Mol Sci 16(1):1466–1481. https://doi.org/10.3390/ijms16011466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Liu YJ, Zhang JY, Li AM, Liu ZW, Zhang YY, Sun XH (2016) Detection of Piwi-interacting RNAs based on sequence features. GMR 15:2. https://doi.org/10.4238/gmr.15028638

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Basic Research Program of Shaanxi Provience of China (Program No.2021JM-347) and the Natural Science Foundation of Shaanxi Province of China (Program No.2021JC-42).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yajun Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Li, A., Xie, G. et al. Computational Methods and Online Resources for Identification of piRNA-Related Molecules. Interdiscip Sci Comput Life Sci 13, 176–191 (2021). https://doi.org/10.1007/s12539-021-00428-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-021-00428-5

Keywords

Navigation