Skip to main content
Log in

Thermoelastic transition kinetics of a gamma irradiated CuZnAl shape memory alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Many types of shape memory alloys have been used in nuclear reactors and aerospace applications where they are exposed to high levels of various kinds of radiation. The effect of gamma irradiation on the transformation kinetics of thermoelastic transformations in a shape memory CuZnAl alloy was investigated by differential scanning calorimetry (DSC) with heating/cooling rates of 10, 20, 30 and 40 °C/min. Irradiation doses of 10, 20, 30 and 40 kGy were applied to the samples of the alloy. Changes in Gibbs free energies, entropies and elastic energies were calculated. Reverse transition temperatures A s and A f systematically decreased with increasing doses, although forward transition temperatures M s and M f underwent a minimum value at a dose of 20 kGy. Hysteresis in the transition temperatures changed as an inverse parabolic function of the irradiation dose. The activation energies of transformations were calculated by using Kissinger and Osawa methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. V. Humbeeck, Mater. Sci. Eng. A 273, 134 (1999).

    Article  Google Scholar 

  2. D. J. Hartl and D. C. Lagoudas, Proc. Ins. Mech. Eng. (G: J. Aerospace Eng.) 221, 535 (2007).

    Article  CAS  Google Scholar 

  3. A. Cuniberti, R. Romero, and M. Stipcich, J. Alloys Comp. 472, 162 (2009).

    Article  CAS  Google Scholar 

  4. N. Kayali, S. Ozgen, and O. Adiguzel, Mater. Res. Bull. 32, 565 (1997).

    Article  Google Scholar 

  5. O. Adiguzel, J. Mater. Process. Technol. 185, 120 (2007).

    Article  CAS  Google Scholar 

  6. C. Lexcellent, P. Blanc, and N. Creton, Mater. Sci. Eng. A 481, 334 (2008).

    Article  Google Scholar 

  7. C. A. Canbay, A. Aydogdu, and Y. Aydogdu, J. Supercond. Nov. Magn. 24, 871 (2011).

    Article  CAS  Google Scholar 

  8. D. E. Alexander, L. E. Rehn, K. Farrell, and R. E. Stoller, J. Nucl. Mater. 228, 68 (1996).

    Article  CAS  Google Scholar 

  9. E. Obradb, L. Mafiosa, and A. Planes, J. Phys. IV France, 7, 233 (1997).

    Google Scholar 

  10. A. Tolley and M. Ahlers, J. Nucl. Mater. 205, 339 (1993).

    Article  CAS  Google Scholar 

  11. Y. Huo, X. T. Zu, A. Li, Z. G. Wang, and L. M. Wang, Acta Materialia 52, 2683 (2004).

    Article  CAS  Google Scholar 

  12. E. Zelaya and A. Tolley, Scripta Mater. 49, 373 (2003).

    Article  CAS  Google Scholar 

  13. E. Zelaya, A. Tolley, A. M. Condo, and P. F. P. Fichtner, Mater. Sci. Eng. A 444, 178 (2007).

    Article  Google Scholar 

  14. R. F. Konopleva, I. V. Nazarkin, and V. L. Solove, Physics of the Solid State 40, 1550 (1998).

    Article  Google Scholar 

  15. Z. H. Dughaish, Mater. Lett. 32, 29 (1997).

    Article  CAS  Google Scholar 

  16. A. Okada, K. Hamada, T. Matsumoto, I. Ishida, and Y. Abe, J. Nucl. Mater. 271, 189 (1999).

    Article  Google Scholar 

  17. R. Zengin and M. Ceylan, Nucl. Inst. Meth. Phys. Res. B 217, 327 (2004).

    Article  CAS  Google Scholar 

  18. C. Tatar, Thermochim. Acta 437, 121 (2005).

    Article  CAS  Google Scholar 

  19. R. Zengin, Thermochim. Acta 503, 61 (2010).

    Article  Google Scholar 

  20. C. Domain, C. S. Becquart, R. E. Stoller, S. I. Gilubov, Oak Ridge National Laboratory, Report Number: ORNL/GEN4/LTR-07-00 (2007).

  21. X. T. Zu, C. F. Zhang, S. Zhu, Y. Huo, Z. G. Wang, and L. M. Wang, Mater. Lett. 57, 2099 (2003).

    Article  CAS  Google Scholar 

  22. N. Oliveira, H. Gonzalez, J. Araújo, A. Filho, and U. Filho,, Materials Research 13, 219 (2010).

    Article  CAS  Google Scholar 

  23. S. K. Giri, M. Krishnan, and U. Ramamurty, Mater. Sci. Eng. A 528, 363 (2010).

    Article  Google Scholar 

  24. Y. Limoge, C. R. Physique 9, 370 (2008).

    Article  CAS  Google Scholar 

  25. Z. G. Wang, X. T. Zu, J. H. Wu, J. Liu, H. Q. Moc, and Y. Huod, J. Alloys Comp. 364, 171 (2004).

    Article  CAS  Google Scholar 

  26. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys, 2nd ed., Chapman & Hall, T. J. Press (Padstow), UK (1992).

    Google Scholar 

  27. H. E. Kissinger, Anal. Chem. 29, 1702 (1957).

    Article  CAS  Google Scholar 

  28. T. Ozawa, J. Therm. Anal. 2, 321 (1970).

    Google Scholar 

  29. R. E. Stoller and L. K. Mansur, Oak Ridge National Laboratory, Report Number: ORNL/TM-2005/506 (2005).

  30. K. Fukuya and I. Kimura, J. Nucl. Sci. Tech. 40, 423 (2003).

    Article  CAS  Google Scholar 

  31. S. P. Simakov and U. Fischer, J. Nucl. Mater. (In Press).

  32. E. Zelaya, A. Tolley, A. M. Condo, and G. Schumacher, J. Phys.: Condens. Matter. 21, 185009 (2009).

    Article  CAS  Google Scholar 

  33. P. Sigmund, Physics Lett. 6, 251 (1963).

    Article  Google Scholar 

  34. A. F. Calder, D. J. Bacon, A. V. Barashev, and Y. N. Osetsky, Phil. Mag. Lett. 88, 43 (2007).

    Article  Google Scholar 

  35. A. Souidi, M. Hou, C. S. Becquart, and C. Domain, J. Nucl. Mater. 295, 179 (2001).

    Article  CAS  Google Scholar 

  36. M. O. Prado, Scripta Mater. 38, 375 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soner Ozgen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozgen, S., Tatar, C. Thermoelastic transition kinetics of a gamma irradiated CuZnAl shape memory alloy. Met. Mater. Int. 18, 909–916 (2012). https://doi.org/10.1007/s12540-012-6001-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-012-6001-8

Key words

Navigation