Skip to main content
Log in

Computational Interpretation of the Relation Between Electric Field and the Applied Current for Cathodic Protection Under Different Conductivity Environments

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

An interpretation of the relation between the electric field and the applied current for cathodic protection is investigated using a boundary element method simulation. Also, a conductivity-difference environment is set for the interface influence. The variation of the potential distribution is increased with the increase of the applied current and the conductivity difference due to the rejection of the current at the interface. In the case of the electric field, the tendencies of the increasing rate and the applied currents are similar, but the interface influence is different according to the directional component and field type (decrease of Ez and increases of Ex and Ey) due to the directional difference between the electric fields. Also, the change tendencies of the electric fields versus the applied current plots are affected by the polarization curve tendency regarding the polarization type (activation and concentration polarizations in the oxygen-reduction and hydrogen-reduction reactions). This study shows that the underwater electric signature is determined by the polarization behavior of the materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.J. Holmes, Reduction of a Ship’s Magnetic Field Signature (Morgan & Claypool Publishers, Williston, 2008), pp. 55–72

    Google Scholar 

  2. J.J. Holmes, Modelling a Ship’s Ferromagnetic Signatures, 1st edn. (Morgan & Claypool Publishers, Williston, 2007), pp. 33–48

    Google Scholar 

  3. J.J. Holmes, Exploitation of a Ship’s Magnetic Field Signatures, 1st edn. (Morgan & Claypool Publishers, Williston, 2006), pp. 12–22

    Google Scholar 

  4. J.C. Hubbard, S.H. Brooks, B.C. Torrance, UDT 64, 480 (1996)

    Google Scholar 

  5. R. Donati, J.P. Le Cadre, IRR Proc. Radar Sonar Navig. 149, 221 (2002)

    Article  Google Scholar 

  6. A. Guibert, O. Chadebec, J.L. Coulomb, C. Rannou, IEEE Trans. Magn. 12, 1828 (2009)

    Article  Google Scholar 

  7. J. Wu, S. Xing, C. Liang, L. Lu, Y. Yan, Adv. Eng. Softw. 42, 902 (2001)

    Article  Google Scholar 

  8. M. Fogiel, The Electromagnetics Problem Solver (Research and Education Association, New Jersey, 2000), pp. 77–83

    Google Scholar 

  9. E.S. Diaz, R. Adey, J. Baynham, Optimisation of ICCP Systems to Minimise Electric Signatures, MARELEC, Stockholm, Sweden, (2001), pp. 1–17

  10. R. Adey, J. Baynham, Predicting Corrosion Related Electrical and Magnetic Fields Using BEM (UDT, 2000)

  11. D.E. Santana, R. Adey, Bound. Elem. 24, 1 (2003)

    Google Scholar 

  12. M. Verney, S. Bailey, M. Siddal, J. Soc. Underw. Tech. 42, 51 (1999/2000)

  13. P. Traverso, E. Canepa, Ocean Eng. 87, 10 (2014)

    Article  Google Scholar 

  14. C. Roder, M.L. Berumen, J. Bouwmeester, E. Papathanassiou, A. Al-Suwailem, C.R. Voolstr, Sci. Rep. 3, 2802 (2013)

    Article  Google Scholar 

  15. A.S. Inan, A.C. Fraser-Smith, O.G. Villard, Radio Sci. 21, 409 (2016)

    Article  Google Scholar 

  16. X.C. Lu, Acoust. Technol. 23, 117 (2004)

    Google Scholar 

  17. R.Y. Yue, Z.X. Tian, Ship Sci. Tech. 31, 21 (2009)

    Google Scholar 

  18. Y. Ruiyng, H. Ping, Z. Jing, IEEE/OES China Ocean Acoust. 10, 1109 (2016)

    Google Scholar 

  19. A. Guibert, O. Chadebec, J.-L. Coulomb, C. Rannou, IEEE T. Magn. 45, 1828 (2009)

    Article  Google Scholar 

  20. B. Grosgogeat, L. Reclaru, M. Lissac, F. Dalard, Biomaterials 20, 933 (1999)

    Article  Google Scholar 

  21. J.-P. Celis, P. Ponthiaux, F. Wenger, Wear 261, 939 (2006)

    Article  Google Scholar 

  22. J.-H. Kim, Y.-S. Kim, J.-G. Kim, Ocean Eng. 115, 149 (2016)

    Article  Google Scholar 

  23. M. Varney, S. Bailey, M. Siddall, Underw. Technol. 24, 51 (1999/2000)

  24. H.-J. Chung, C.-S. Yang, G.-W. Jeung, J.-J. Jeon, D.-H. Kim, IEEE Trans. Magn. 47, 1282 (2011)

    Article  Google Scholar 

  25. D.A. Jones, Principle and Prevention of Corrosion, 2nd edn. (Prentice Hall, New Jersey, 1996), pp. 235–248

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Agency for Defense Development (No. UD150010DD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Gu Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, YS., Ko, SJ., Lee, S. et al. Computational Interpretation of the Relation Between Electric Field and the Applied Current for Cathodic Protection Under Different Conductivity Environments. Met. Mater. Int. 24, 315–326 (2018). https://doi.org/10.1007/s12540-018-0034-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-0034-6

Keywords

Navigation