Skip to main content
Log in

Microstructure, Tensile and Fatigue Properties of Al–5 wt.%Mg Alloy Manufactured by Twin Roll Strip Casting

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This study investigated the microstructure, tensile and fatigue properties of Al–5 wt.%Mg alloy manufactured by twin roll strip casting. Strips cast as a fabricated (F) specimen and a specimen heat treated (O) at 400 °C/5 h were produced and compared. In the F specimen, microstructural observation discovered clustered precipitates in the center area, while in the O specimen precipitates were relatively more evenly distributed. Al, Al6(Mn, Fe), Mg2Al3 and Mg2Si phases were observed. However, most of the Mg2Al3 phase in the heat-treated O specimen was dissolved. A room temperature tensile test measured yield strength of 177.7 MPa, ultimate tensile strength of 286.1 MPa and elongation of 11.1% in the F specimen and 167.7 MPa (YS), 301.5 MPa (UTS) and 24.6% (EL) in the O specimen. A high cycle fatigue test measured a fatigue limit of 145 MPa in the F specimen and 165 MPa in the O specimen, and the O specimen achieved greater fatigue properties in all fatigue stress conditions. The tensile and fatigue fracture surfaces of the above-mentioned specimens were observed, and this study attempted to investigate the tensile and fatigue deformation behavior of strip cast Al–5 wt.%Mg based on the findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Hazler, A. Vieregge, Mater. Sci. Eng. A 280, 27 (2000)

    Article  Google Scholar 

  2. H. Hayashi, T. Nakagawa, J. Mater. Process. Technol. 46, 455 (1994)

    Article  Google Scholar 

  3. M. Yilirim, D. Ozyurek, Mater. Des. 51, 767 (2013)

    Article  Google Scholar 

  4. A. Thirugnanam, K. Sukumaran, U.T.S. Pillai, K. Raghukandan, B.C. Pai, Mater. Sci. Eng. A 445, 405 (2007)

    Article  Google Scholar 

  5. H. Mayer, M. Papakyriacou, B. Zettl, S.E. Stanzl-Tschegg, Int. J. Fatigue 25, 245 (2003)

    Article  Google Scholar 

  6. H.W. Kim, J.H. Cho, C.Y. Lim, S.B. Kang, Trends Met. Mater. Eng. 23, 16 (2010)

    Google Scholar 

  7. S. Komura, P.B. Berbon, M. Furukawa, Z. Horita, M. Nemoto, T.G. Langdon, Scr. Mater. 38, 12 (1998)

    Article  Google Scholar 

  8. T. Mukai, M. Kawazoe, K. Higashi, Mater. Sci. Eng. A 247, 270 (1998)

    Article  Google Scholar 

  9. M. Mabuchi, H. Iwasaki, K. Higashi, Nanostruct. Mater. 8, 1105 (1997)

    Article  Google Scholar 

  10. R.W. Fonda, P.S. Pao, H.N. Jones, C.R. Feng, B.J. Connolly, A.J. Davenport, Mater. Sci. Eng. A 519, 1 (2009)

    Article  Google Scholar 

  11. A. Vinogradov, S. Nagasaki, V. Patlan, K. Kitagawa, M. Kwazoe, Nanostruct. Mater. 11, 7 (1999)

    Article  Google Scholar 

  12. R. Ghelichi, D. Macdonald, S. Bagherifard, H. Jahed, M. Guagliano, B. Jodoin, Acta Mater. 60, 6555 (2012)

    Article  Google Scholar 

  13. M. Dundar, Y. Birol, A.S. Akkurt, Mater. Sci. Forum 396, 1647 (2002)

    Article  Google Scholar 

  14. F. Birol, Y. Birol, Inst. Mater. Eng. Aust. 28, 338 (2004)

    Google Scholar 

  15. M. Cieslar, J. Bajer, M. Zimina, M. Slapakova, O. Grydin, Mater. Sci. Eng. 179, 1 (2017)

    Google Scholar 

  16. G.S. Ham, K.J. Euh, Y.M. Rhyim, K.A. Lee, Mater. Trans. 57, 78 (2016)

    Article  Google Scholar 

  17. C.H. Gras, M. Meredith, J.D. Hunt, J. Mater. Process. Technol. 167, 62 (2005)

    Article  Google Scholar 

  18. J.G. Lee, S.S. Park, S.B. Lee, H.T. Chung, N.J. Kim, Scr. Mater. 53, 693 (2005)

    Article  Google Scholar 

  19. J.T. Choi, Y.H. Kim, K.H. Oh, H.Y. Ra, Korean J. Met. Mater. 34, 1005 (1996)

    Google Scholar 

  20. Y. Birol, J. Alloys Compd. 471, 122 (2009)

    Article  Google Scholar 

  21. J. Wang, J.C. Feng, Y.X. Wang, Mater. Sci. Technol. 24, 827 (2008)

    Article  Google Scholar 

  22. Y. Liu, G. Huang, Y. Sun, L. Zhang, Z. Huang, J. Wang, C. Liu, Materials 9, 88 (2016)

    Article  Google Scholar 

  23. M. Zha, Y. Li, R.H. Mathiesen, R. Bjorge, H.J. Roven, Acta Mater. 84, 42 (2015)

    Article  Google Scholar 

  24. W.F. Smith, Structure and Properties of Engineering Alloys (McGraw-Hill, New York, 1993)

    Google Scholar 

  25. B.H. Lee, S.H. Kim, J.H. Park, H.W. Kim, J.C. Lee, Mater. Sci. Eng. A 657, 115 (2016)

    Article  Google Scholar 

  26. O. Ryen, B. Holmedal, O. Nijs, E. Nes, E. Sjolander, H.E. Ekstrom, Metall. Mater. Trans. A 37, 1999 (2006)

    Article  Google Scholar 

  27. P.H. Chang, J. Mater. Sci. Lett. 7, 270 (1988)

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Ministry of Trade, Industry and Energy (MOTIE) and Korea Institute for Advancement of Technology (KIAT) through the Materials and Component Alliance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kee-Ahn Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heo, JY., Baek, MS., Euh, KJ. et al. Microstructure, Tensile and Fatigue Properties of Al–5 wt.%Mg Alloy Manufactured by Twin Roll Strip Casting. Met. Mater. Int. 24, 992–1001 (2018). https://doi.org/10.1007/s12540-018-0123-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-0123-6

Keywords

Navigation