Skip to main content
Log in

Modeling the Anisotropic Flow Behavior of Precipitate-Hardened Al–Cu Alloys During Plane Strain Compression

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this study, the effects of plate-shaped precipitates on the mechanical properties and plastic anisotropy of Al–Cu alloys during plane strain loading were investigated. The modified aging kinetics model of Shercliff and Ashby was used to obtain the precipitate size and volume fraction after different schedules of aging treatment. An explicit term, named as weighting function was obtained based on the elastic inclusion model for the directional dependency of strengthening developed by non-shearable plate shape precipitates during plane strain compression. This orientation dependent term was used along with the precipitate features obtained from the kinetics model, and dislocation density varying during deformation, to calculate the slip system strength. Also, a Kocks–Mecking type dislocation evolution model of single phase materials was modified to assess the anisotropic influence of non-shearable precipitates on the flow behavior of age hardenable alloy. The proposed model is validated by comparing the modeling results for precipitates size, precipitates volume fraction and stress–strain curves under different aging conditions, with that of experiments. It is found that the presence of non-shearable precipitates can reduce crystallography anisotropy, in fact, the weak orientations are strengthened more by precipitates than hard orientations. The developed model can be applied to single crystals and also textured polycrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W.F. Smith, Structure and Properties of Engineering Alloy (McGraw-Hill Publishing Company, New York City, 1981)

    Google Scholar 

  2. O.R. Myhr, Q. Grong, K.O. Pedersen, Metall. Mater. Trans. A 41, 2276 (2010)

    Article  Google Scholar 

  3. N. Anjabin, A. Karimi Taheri, H.S. Kim, Metall. Mater. Trans. A 44, 5853 (2013)

    Article  Google Scholar 

  4. G. Fribourg, Y. Brechet, A. Deschamps, A. Simar, Acta Mater. 59, 3621 (2011)

    Article  Google Scholar 

  5. A. Biswas, D.J. Siegel, C. Wolverton, D.N. Seidman, Acta Mater. 59, 6187 (2011)

    Article  Google Scholar 

  6. G.F. Vander Voort, Metallography and Microstructures, vol. 9 (ASM Handbook, Materials Park, 2004)

    Book  Google Scholar 

  7. J.F. Nie, B.C. Muddle, Acta Mater. 56, 3490 (2008)

    Article  Google Scholar 

  8. H. Liu, B. Bellon, J. Llorca, Acta Mater. 132, 611 (2017)

    Article  Google Scholar 

  9. F. Barlat, J. Liu, J.C. Brem, Model. Simul. Mater. Sci. Eng. 8, 435 (2008)

    Article  Google Scholar 

  10. C.S. Han, R.H. Wagoner, F. Barlat, Int. J. Plast. 20, 477 (2004)

    Article  Google Scholar 

  11. H. Sehitoglu, T. Foglesong, H.J. Maier, Metall. Mater. Trans. A 36, 1 (2005)

    Article  Google Scholar 

  12. F. Barlat, J. Liu, J.C. Brem, Model. Simul. Mater. Sci. Eng. 8, 435 (2000)

    Article  Google Scholar 

  13. W.F. Hosford, R.H. Zeisloft, Metall. Trans. A 3, 113 (1972)

    Article  Google Scholar 

  14. P. Bate, W.T. Roberts, D.V. Wilson, Acta Metall. 22, 1797 (1981)

    Article  Google Scholar 

  15. F. Roters, P. Eisenlohr, T.R. Bieler, D. Raabe, Crystal Plasticity Finite Element Methods in Materials Science and Engineering (Wiley-VCH, Hoboken, 2010)

    Book  Google Scholar 

  16. M.T. Lyttle, J.A. Wert, Metall. Mater. Trans. A 30, 1283 (1999)

    Article  Google Scholar 

  17. H. Hargarter, M.T. Lyttle, E.A. Starke, Mater. Sci. Eng., A 257, 87 (1998)

    Article  Google Scholar 

  18. S. Mishra, M. Yadava, K. Kulkarni, N.P. Gurao, Mater. Sci. Eng., A 699, 217 (2017)

    Article  Google Scholar 

  19. H.R. Shercliff, M.F. Ashby, Acta Metall. Mater. 38, 1789 (1990)

    Article  Google Scholar 

  20. S. Esmaeili, D.J. Lloyd, W.J. Poole, Acta Mater. 51, 2243 (2003)

    Article  Google Scholar 

  21. G. Liu, G.J. Zhang, X.D. Ding, J. Sun, K.H. Chen, Mater. Sci. Eng., A 344, 113 (2003)

    Article  Google Scholar 

  22. O.R. Myhr, Q. Grong, S.J. Andersen, Acta Mater. 49, 65 (2001)

    Article  Google Scholar 

  23. O.R. Myhr, Q. Grong, H.G. Fjaer, C.D. Marioara, Acta Mater. 52, 4997 (2004)

    Article  Google Scholar 

  24. L.M. Cheng, W.J. Poole, J.D. Embury, D.J. Lloyd, Metall. Mater. Trans. A 34, 2473 (2003)

    Article  Google Scholar 

  25. A. Simar, Y. Brechet, D.B. Meester, A. Denquin, T. Pardoen, Acta Mater. 55, 6133 (2007)

    Article  Google Scholar 

  26. N. Anjabin, A. Karimi Taheri, H.S. Kim, Comput. Mater. Sci. 83, 78 (2014)

    Article  Google Scholar 

  27. J.C. Teixeira, L. Bourgeois, C.W. Sinclair, C.R. Hutchinson, Acta Mater. 57, 6075 (2009)

    Article  Google Scholar 

  28. W.F. Hosford, Acta Metall. 14, 1085 (1966)

    Article  Google Scholar 

  29. N. Anjabin, A. Karimi Taheri, Mater. Sci. Tech. 29, 968 (2013)

    Article  Google Scholar 

  30. L.M. Brown, D.R. Clarke, Acta Metall. 23, 821 (1975)

    Article  Google Scholar 

  31. T. Mura, Micromechanics of Defects in Solids (Dordrecht Publishers, Dordrecht, 1987)

    Book  Google Scholar 

  32. Y. Estrin, J. Mater. Proc. Tech. 80, 33 (1998)

    Article  Google Scholar 

  33. S. Gouttebroze, A. Mo, Q. Grong, K.O. Pedersen, H.G. Fjaer, Metall. Mater. Trans. A 39, 522 (2008)

    Article  Google Scholar 

  34. H. Mecking, U.F. Kocks, Acta Metall. 29, 1865 (1981)

    Article  Google Scholar 

  35. W.H. Hosford, The Mechanics of Crystals and Textured Polycrystals (Oxford University Press, Oxford, 1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nozar Anjabin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anjabin, N. Modeling the Anisotropic Flow Behavior of Precipitate-Hardened Al–Cu Alloys During Plane Strain Compression. Met. Mater. Int. 25, 159–167 (2019). https://doi.org/10.1007/s12540-018-0169-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-0169-5

Keywords

Navigation