Skip to main content
Log in

Abstract

Acoustic energy is an important form of energy which is generated and unused all around us. Despite the prevalence of acoustic energy a major challenge of energy harvesting is the low power density in typical acoustic noise fields. With a larger focus on green energy, acoustic energy is one of the vastly available energy sources and so harvesting this energy plays an important role in research. Unconventionally a thermoacoustic engine converts thermal energy to acoustic energy via its core, comprising a porous material that is sandwiched between two heat exchangers. The induced acoustic wave can be converted into electricity by introducing novel environment friendly energy converters. Integration of the thermoacoustic technology with piezoelectricity tends to be promising, since the piezoelectric ceramics are sensitive and operating efficiently at high frequencies. Thermoacoustic technology is receiving growing interest in research for its many advantages, such as having no moving parts, being environment friendly and the possibility of using other renewable energy for its operation. This paper aims at providing a review on various acoustic and thermoacoustic energy harvesting techniques and the maximum power generated from each of these techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahn, S. H., “Preface for a Special Issue on Green Manufacturing and Applications,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 7, Paper No. 1027, 2012.

    Google Scholar 

  2. Ahn, S. H., Chun, D. M., and Chu, W. S., “Perspective to Green Manufacturing and Applications,” Int. J. Precis. Eng. Manuf., Vol. 14, No. 6, pp. 873–874, 2013.

    Article  Google Scholar 

  3. Kim, H. S., Kim, J. H., and Kim, J., “A Review of Piezoelectric Energy Harvesting based on Vibration,” Int. J. Precis. Eng. Manuf., Vol. 12, No. 6, pp. 1129–1141, 2011.

    Article  Google Scholar 

  4. Sodano, H. A., Inman, D. J., and Park, G., “A Review of Power Harvesting from Vibration using Piezoelectric Materials,” Shock and Vibration Digest, Vol. 36, No. 3, pp. 197–206, 2004.

    Article  Google Scholar 

  5. Nechibvute, A., Chawanda, A., and Luhanga, P., “Piezoelectric Energy Harvesting Devices: an Alternative Energy Source for Wireless Sensors,” Smart Materials Research, Vol. 2012, Article ID. 853481, pp. 1–13, 2012.

    Article  Google Scholar 

  6. Richards, C. D., Anderson, M. J., Bahr, D. F., and Richards, R. F., “Efficiency of Energy Conversion for Devices Containing a Piezoelectric Component,” Journal of Micromechanics and Microengineering, Vol. 14, No. 5, pp. 717, 2004.

    Article  Google Scholar 

  7. Shu, Y. C. and Lien, I. C., “Efficiency of Energy Conversion for a Piezoelectric Power Harvesting System,” Journal of Micromechanics and Microengineering, Vol. 16, No. 11, pp. 2429, 2006.

    Article  Google Scholar 

  8. Sodano, H. A., Inman, D. J., and Park, G., “Comparison of Piezoelectric Energy Harvesting Devices for Recharging Batteries,” Journal of Intelligent Material Systems and Structures, Vol. 16, No. 10, pp. 799–807, 2005.

    Article  Google Scholar 

  9. Sang, C. M., Dayou, J., and Liew, W. Y., “Increasing the Output from Piezoelectric Energy Harvester using Width-Split Method with Verification,” Int. J. Precis. Eng. Manuf., Vol. 14, No. 12, pp. 2149–2155, 2013.

    Article  Google Scholar 

  10. Chong, W. T., Poh, S. C., Fazlizan, A., Yip, S. Y., Koay, M. H., and Hew, W. P., “Exhaust Air Energy Recovery System for Electrical Power Generation in Future Green Cities,” Int. J. Precis. Eng. Manuf., Vol. 14, No. 6, pp. 1029–1035, 2013.

    Article  Google Scholar 

  11. Lee, J. and Choi, B., “A Study on the Piezoelectric Energy Conversion System using Motor Vibration,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 4, pp. 573–579, 2012.

    Article  Google Scholar 

  12. Basagni, S., Conti, M., Giordano, S., and Stojmenovic, I., “Mobile Ad Hoc Networking: The Cutting Edge Directions,” Wiley-IEEE Preiss, 2nd Ed., Chap. 20, 2013.

    Google Scholar 

  13. Sherrit, S., “The Physical Acoustics of Energy Harvesting,” Proc. of IEEE International Ultrasonics Symposium, pp. 1046–1055, 2008.

    Google Scholar 

  14. Dornfeld, D. A., “Green Manufacturing: Fundamentals and Applications,” Springer, Chap. 1, pp. 289, 2012.

    Google Scholar 

  15. Blackstock, D. T., “Fundamentals of Physical Acoustics,” John Wiley & Sons, pp. 153, 2000.

    Google Scholar 

  16. Kinsler, L. E., Frey, A. R., Coppens, A. B., and Sanders, J. V., “Fundamentals of Acoustics,” John Wiley & Sons, 4th Ed., Chap. 10, 1999.

    Google Scholar 

  17. Chanaud, R. C., “Effects of Geometry on the Resonance Frequency of Helmholtz Resonators,” Journal of Sound and Vibration, Vol. 178, No. 3, pp. 337–348, 1994.

    Article  Google Scholar 

  18. Diracdelta.co.uk Science and Engineering Encyclopedia, “Computing Computer Network Electronics Audio Electrical Engineering Instrumentation Signal Processing,” http://www.diracdelta.co.uk/science/source/h/o/home/source.html (Accessed 20 MAR 2014)

  19. Gelfand, S.A., “Essentials of Audiology,” Thieme, 2nd Ed., Chap. 1, 2001.

    Google Scholar 

  20. Sohn, C. H. and Park, J. H., “A Comparative Study on Acoustic Damping Induced by Half-Wave, Quarter-Wave, and Helmholtz Resonators,” Aerospace Science and Technology, Vol. 15, No. 8, pp. 606–614, 2011.

    Article  Google Scholar 

  21. Horowitz, S. B., Nishida, T., Cattafesta, L. N., and Sheplak, M., “Characterization of a Compliant-Backplate Helmholtz Resonator for an Electromechanical Acoustic Liner,” International Journal of Aeroacoustics, Vol. 1, No. 2, pp. 183–205, 2002.

    Article  Google Scholar 

  22. Sheplak, M., Cattafesta, L., Nishida, T., and Horowitz, S. B., “Electromechanical acoustic liner,” us Patent, No. 6782109 B2, 2004.

    Google Scholar 

  23. Taylor, R., Liu, F., Horowitz, S., Ngo, K., Nishida, T., and et al., “Technology Development for Electromechanical Acoustic Liners,” Proc. of Active 04, Paper No. a04-093, 2004.

    Google Scholar 

  24. Liu, F., Horowitz, S., Nishida, T., Cattafesta, L., and Sheplak, M., “A Multiple Degree of Freedom Electromechanical Helmholtz Resonatora),” The Journal of the Acoustical Society of America, Vol. 122, No. 1, pp. 291–301, 2007.

    Article  Google Scholar 

  25. Liu, F., Phipps, A., Horowitz, S., Ngo, K., Cattafesta, L., and et al., “Acoustic Energy Harvesting using an Electromechanical Helmholtz Resonatora),” The Journal of the Acoustical Society of America, Vol. 123, No. 4, pp. 1983–1990, 2008.

    Article  Google Scholar 

  26. Horowitz, S. B., Sheplak, M., Cattafesta III, L. N., and Nishida, T., “A MEMS Acoustic Energy Harvester,” Journal of Micromechanics and Microengineering, Vol. 16, No. 9, pp. S174–S181, 2006.

    Article  Google Scholar 

  27. Kim, S. H., Ji, C. H., Galle, P., Herrault, F., Wu, X., and et al., “An Electromagnetic Energy Scavenger from Direct Airflow,” Journal of Micromechanics and Microengineering, Vol. 19, No. 9, Paper No. 094010, 2009.

    Google Scholar 

  28. Khan, F. U. and Izhar, “Acoustic-Based Electrodynamic Energy Harvester for Wireless Sensor Nodes Application,” International Journal of Materials Science and Engineering, Vol. 1, No. 2, pp. 72–78, 2013.

    Article  Google Scholar 

  29. Noh, S., Lee, H., and Choi, B., “A Study on the Acoustic Energy Harvesting with Helmholtz Resonator and Piezoelectric Cantilevers,” Int. J. Precis. Eng. Manuf., Vol. 14, No. 9, pp. 1629–1635, 2013.

    Article  Google Scholar 

  30. Li, B. and You, J. H., “Harvesting Ambient Acoustic Energy using Acoustic Resonators,” Proc. of Meetings on Acoustics, Vol. 12, No. 1, Paper No. 065001, 2014.

    Google Scholar 

  31. Li, B., Laviage, A. J., You, J. H., and Kim, Y. J., “Acoustic Energy Harvesting Using Quarter-Wavelength Straight-Tube Resonator,” Proc. of ASME International Mechanical Engineering Congress and Exposition, pp. 467–473, 2012.

    Google Scholar 

  32. Li, B. and You, J. H., “Simulation of Acoustic Energy Harvesting Using Piezoelectric Plates in a Quarter-wavelength Straight-tube Resonator,” Proc. of COMSOL Conference, 2012.

    Google Scholar 

  33. Li, B., You, J. H., and Kim, Y. J., “Low Frequency Acoustic Energy Harvesting using PZT Piezoelectric Plates in a Straight Tube Resonator,” Smart Materials and Structures, Vol. 22, No. 5, Paper No. 055013, 2013.

    Google Scholar 

  34. Li, B., Laviage, A.J., You, J. H., and Kim, Y. J., “Harvesting Low-Frequency Acoustic Energy using Multiple PVDF Beam Arrays in Quarter-Wavelength Acoustic Resonator,” Applied Acoustics, Vol. 74, No. 11, pp. 1271–1278, 2013.

    Article  Google Scholar 

  35. Truitt, A. and Mahmoodi, S. N., “A Review on Active Wind Energy Harvesting Designs,” Int. J. Precis. Eng. Manuf., Vol. 14, No. 9, pp. 1667–1675, 2013.

    Article  Google Scholar 

  36. Yoon, Y. J., Park, W. T., Li, K. H. H., Ng, Y. Q., and Song, Y., “A Study of Piezoelectric Harvesters for Low-Level Vibrations in Wireless Sensor Networks,” Int. J. Precis. Eng. Manuf., Vol. 14, No. 7, pp. 1257–1262, 2013.

    Article  Google Scholar 

  37. Roundy, S., Wright, P. K., and Rabaey, J. M., “Energy Scavenging for Wireless Sensor Networks,” Norwell, Chap. 4, pp. 51–85, 2003.

    Google Scholar 

  38. Miyashita, T., “Sonic Crystals and Sonic Wave-Guides,” Measurement Science and Technology, Vol. 16, No. 5, pp. R47–R63, 2005.

    Article  Google Scholar 

  39. Wu, L. Y., Chen, L. W., and Liu, C. M., “Acoustic Energy Harvesting using Resonant Cavity of a Sonic Crystal,” Applied Physics Letters, Vol. 95, No. 1, Paper No. 013506, 2009.

    Google Scholar 

  40. Sigalas, M. M., “Defect States of Acoustic Waves in a Two-Dimensional Lattice of Solid Cylinders,” Journal of Applied Physics, Vol. 84, No. 6, pp. 3026–3030, 1998.

    Article  Google Scholar 

  41. Wu, L. Y., Chen, L. W., and Liu, C. M., “Experimental Investigation of the Acoustic Pressure in Cavity of a Two-Dimensional Sonic Crystal,” Physica B: Condensed Matter, Vol. 404, No. 12, pp. 1766–1770, 2009.

    Article  Google Scholar 

  42. Wu, L. Y., Chen, L. W., and Liu, C. M., “Acoustic Pressure in Cavity of Variously Sized Two-Dimensional Sonic Crystals with Various Filling Fractions,” Physics Letters A, Vol. 373, No. 12, pp. 1189–1195, 2009.

    Article  Google Scholar 

  43. Yeh, J. Y., “Application and Analysis of Phononic Crystal Energy Harvesting Devices,” Journal of Engineering and Technology Education, Vol. 10, No. 1, pp. 18–26, 2013.

    Google Scholar 

  44. Wang, W. C., Wu, L. Y., Chen, L. W., and Liu, C. M., “Acoustic Energy Harvesting by Piezoelectric Curved Beams in the Cavity of a Sonic Crystal,” Smart Materials and Structures, Vol. 19, No. 4, Paper No. 045016, 2010.

    Google Scholar 

  45. Yang, A., Li, P., Wen, Y., Lu, C., Peng, X., and et al., “Enhanced Acoustic Energy Harvesting Using Coupled Resonance Structure of Sonic Crystal and Helmholtz Resonator,” Applied Physics Express, Vol. 6, No. 12, Paper No. 127101, 2013.

    Google Scholar 

  46. Hernandez, R., Jung, S., and Matveev, K., “Acoustic Energy Harvesting from Vortex-Induced Tonal Sound in a Baffled Pipe,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 225, No. 8, pp. 1847–1850, 2011.

    Google Scholar 

  47. Matveev, K. I. and Hernandez, R., “Modular System for Studying Tonal Sound Excitation in Resonators with Heat Addition and Mean Flow,” The Journal of the Acoustical Society of America, Vol. 131, No. 3, pp. 2472–2479, 2012.

    Article  Google Scholar 

  48. Cunefare, K. A., Skow, E. A., and Erturk, A., “Transduction as Energy Conversion; Harvesting of Acoustic Energy in Hydraulic Systems,” Proceedings of Meetings on Acoustics, Vol. 19, No. 1, Paper No. 030070, 2013.

    Google Scholar 

  49. Cunefare, K. A., Skow, E., Erturk, A., Savor, J., Verma, N., and Cacan, M., “Energy Harvesting from Hydraulic Pressure Fluctuations,” Smart Materials and Structures, Vol. 22, No. 2, Paper No. 025036, 2013.

    Google Scholar 

  50. Jamal, G., Hassan, H., Das, A., Ferdous, J., and Lisa, S.A., “Generation of Usable Electric Power from Available Random Sound Energy,” Proc. of International Conference on Informatics, Electronics & Vision (ICIEV), pp. 1–4, 2013.

    Google Scholar 

  51. Lallart, M., Guyomar, D., Richard, C., and Petit, L., “Nonlinear Optimization of Acoustic Energy Harvesting using Piezoelectric Devices,” The Journal of the Acoustical Society of America, Vol. 128, No. 5, pp. 2739–2748, 2010.

    Article  Google Scholar 

  52. Swift, G., “Thermoacoustics,” Springer Handbook of Acoustics, pp. 239–255, 2007.

    Chapter  Google Scholar 

  53. Swift, G. W. and America, A. S. O., “Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators,” Acoustical Society of America through the American Institute of Physics, 2002.

    Google Scholar 

  54. Swift, G. W., “Thermoacoustic Engines,” The Journal of the Acoustical Society of America, Vol. 84, No. 4, pp. 1145–1180, 1988.

    Article  Google Scholar 

  55. Backhaus, S. and Swift, G. W., “A Thermoacoustic-Stirling Heat Engine: Detailed Study,” The Journal of the Acoustical Society of America, Vol. 107, No. 6, pp. 3148–3166, 2000.

    Article  Google Scholar 

  56. Backhaus, S. and Swift, G., “A Thermoacoustic Stirling Heat Engine,” Nature, Vol. 399, No. 6734, pp. 335–338, 1999.

    Article  Google Scholar 

  57. Jung, S. and Matveev, K., “Study of a Small-Scale Standing-Wave Thermoacoustic Engine,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 224, No. 1, pp. 133–141, 2010.

    Google Scholar 

  58. Keolian, R. M. and Bastyr, K. J., “Thermoacoustic Piezoelectric Generator,” US Patent, No. 7081699B2, 2006.

    Google Scholar 

  59. Matveev, K. I., Wekin, A., Richards, C. D., and Shafrei-Tehrany, N., “On the Coupling between Standing-Wave Thermoacoustic Engine and Piezoelectric Transducer,” Proc. of ASME International Mechanical Engineering Congress and Exposition, pp. 765–769, 2007.

    Google Scholar 

  60. Nouh, M., Aldraihem, O., and Baz, A., “Energy Harvesting of Thermoacoustic-Piezo Systems with a Dynamic Magnifier,” Journal of Vibration and Acoustics, Vol. 134, No. 6, Paper No. 061015, 2012.

    Google Scholar 

  61. Aldraihem, O. and Baz, A., “Energy Harvester with a Dynamic Magnifier,” Journal of Intelligent Material Systems and Structures, Vol. 22, No. 6, pp. 521–530, 2011.

    Article  Google Scholar 

  62. Andersen, B. J. and Symko, O. G., “Helmholtz-like Resonators for Thermoacoustic Prime Movers,” The Journal of the Acoustical Society of America, Vol. 125, No. 2, pp. 787–792, 2009.

    Article  Google Scholar 

  63. Smoker, J., Nouh, M., Aldraihem, O., and Baz, A., “Energy Harvesting from a Standing Wave Thermoacoustic-Piezoelectric Resonator,” Journal of Applied Physics, Vol. 111, No. 10, Paper No. 104901, 2012.

    Google Scholar 

  64. Nouh, M., Aldraihem, O., and Baz, A., “Analysis and Optimization of Thermoacoustic-Piezoelectric Energy Harvesters: an Electrical Circuit Analogy Approach,” Proc. of SPIE, Vol. 8688, Paper No. 86880L, 2013.

  65. Jensen, C. and Raspet, R., “Thermoacoustic Power Conversion using a Piezoelectric Transducera,” The Journal of the Acoustical Society of America, Vol. 128, No. 1, pp. 98–103, 2010.

    Article  Google Scholar 

  66. Ward, B., Clark, J., and Swift, G., “Design Environment for Low-Amplitude Thermoacoustic Energy Conversion DELTAEC-Version 6.2 User Guide,” Los Alamos National Laboratory, 2008.

    Google Scholar 

  67. Zhao, D. and Chew, Y., “Energy Harvesting from a Convection-Driven Rijke-Zhao Thermoacoustic Engine,” Journal of Applied Physics, Vol. 112, No. 11, Paper No. 114507, 2012.

    Google Scholar 

  68. Feldman, K. T., “Review of the Literature on Rijke Thermoacoustic Phenomena,” Journal of Sound and Vibration, Vol. 7, No. 1, pp. 83–89, 1968.

    Article  Google Scholar 

  69. Zhao, D., “Waste Thermal Energy Harvesting from a Convection-Driven Rijke-Zhao Thermo-Acoustic-Piezo System,” Energy Conversion and Management, Vol. 66, No. pp. 87–97, 2013.

    Article  Google Scholar 

  70. Zhao, D., “Self-Selected Self-Excited Combustion Oscillations in a Rijke-Zhao Tube,” Proc. of 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference), Document ID. AIAA 2012-2088, 2012.

    Google Scholar 

  71. Yazaki, T., Iwata, A., Maekawa, T., and Tominaga, A., “Traveling Wave Thermoacoustic Engine in a Looped Tube,” Physical Review Letter, Vol. 81, No. 15, pp. 3128–3131, 1998.

    Article  Google Scholar 

  72. Sun, D. M., Wang, K., Lou, P., Zhao, Y. T., Zhang, X. J., and Qiu, L. M., “Working Characteristics of Stirling-Type Thermoacoustic Engine Connected with Linear Alternator,” Journal of Zhejiang University Engineering Science, Vol. 47, No. 8, pp. 1457–1462, 2013.

    Google Scholar 

  73. Backhaus, S., Tward, E., and Petach, M., “Traveling-Wave Thermoacoustic Electric Generator,” Applied Physics Letters, Vol. 85, No. 6, pp. 1085–1087, 2004.

    Article  Google Scholar 

  74. Luo, E., Wu, Z., Dai, W., Li, S., and Zhou, Y., “A 100 W-Class Traveling-Wave Thermoacoustic Electricity Generator,” Chinese Science Bulletin, Vol. 53, No. 9, pp. 1453–1456, 2008.

    Article  Google Scholar 

  75. Wu, Z., Man, M., Luo, E., Dai, W., and Zhou, Y., “Experimental Investigation of a 500 W Traveling-Wave Thermoacoustic Electricity Generator,” Chinese Science Bulletin, Vol. 56, No. 19, pp. 1975–1977, 2011.

    Article  Google Scholar 

  76. Wu, Z., Dai, W., Man, M., and Luo, E., “A Solar-Powered Traveling-Wave Thermoacoustic Electricity Generator,” Solar Energy, Vol. 86, No. 9, pp. 2376–2382, 2012.

    Article  Google Scholar 

  77. Yu, Z., Jaworski, A., and Backhaus, S., “A Low-Cost Electricity Generator for Rural Areas using a Travelling-Wave Looped-Tube Thermoacoustic Engine,” Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, Vol. 224, No. 6, pp. 787–795, 2010.

    Google Scholar 

  78. Sun, D. M., Wang, K., Zhang, X. J., Guo, Y. U., Xu, Y., and Qiu, L. M., “A Traveling-Wave Thermoacoustic Electric Generator with a Variable Electric RC Load,” Applied Energy, Vol. 106, pp. 377–382, 2013.

    Article  Google Scholar 

  79. Yu, Z., Jaworski, A. J., and Backhaus, S., “Travelling-Wave Thermoacoustic Electricity Generator using an Ultra-Compliant Alternator for Utilization of Low-Grade Thermal Energy,” Applied Energy, Vol. 99, No. pp. 135-145, 2012.

    Google Scholar 

  80. Chen, B., Yousif, A. A., Riley, P. H., and Hann, D. B., “Development and Assessment of Thermoacoustic Generators Operating by Waste Heat from Cooking Stove,” Engineering, Vol. 4, No. 12, pp. 890–902, 2012.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezhilarasi Deenadayalan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pillai, M.A., Deenadayalan, E. A review of acoustic energy harvesting. Int. J. Precis. Eng. Manuf. 15, 949–965 (2014). https://doi.org/10.1007/s12541-014-0422-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-014-0422-x

Keywords

Navigation