Skip to main content

Advertisement

Log in

Divaricate growth habit in Williamsoniaceae (Bennettitales): unravelling the ecology of a key Mesozoic plant group

  • Original Paper
  • Published:
Palaeobiodiversity and Palaeoenvironments Aims and scope Submit manuscript

Abstract

Representatives of Williamsoniacae (Bennettitales) are usually restored as small-leafed shrubs or low-growing trees with densely interlaced stems bifurcating or trifurcating at broad angles—a growth form referred to as divaricating. A divaricate plant architecture has evolved independently in at least 18 modern plant families, of which the majority occur in New Zealand, where they constitute more than 10 % of the flora. Botanists favour two or three hypotheses on the benefits of a divaricating habit for modern plants. One hypothesis favours the evolution of this habit to protect the foliage and reproductive structures from browsing by large mammals or large flightless birds, such as the recently extinct moa or other ratites. Another argues that this habit evolved in response to a dry, windy or frosty climate, whereas a third regards divarication as having evolved to optimise foliar light harvesting. Our evaluation of these hypotheses with respect to the ecological pressures known to have been experienced by Williamsoniaceae in the mid-Mesozoic reveals that although defence against browsing tetrapods cannot be excluded as a selective pressure that promoted divarication in Williamsoniaceae, many of the anatomical and morphological features of this family appear to represent responses to local environmental conditions. In this context, representatives of Williamsoniaceae have many characters that are convergent with members of Banksiinae (Proteaceae), suggesting adaptation to open vegetation communities on nutrient-deficient soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Angiosperm Phylogeny Group (APG) III (2009) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121

    Article  Google Scholar 

  • Atkinson IAE, Greenwood RM (1989) Relationships between moas and plants. NZ J Ecol 12[Suppl]:67–97

    Google Scholar 

  • Barrett PM, Willis KJ (2001) Did dinosaurs invent flowers? Dinosaur–angiosperm coevolution revisited. Biol Rev 76:411–447

    Article  Google Scholar 

  • Barrett PM, Butler RJ, Nesbitt SJ (2011) The roles of herbivory and omnivory in early dinosaur evolution. Earth Environ Sci Trans R Soc Edinburgh 101:383–396

    Article  Google Scholar 

  • Bell AD (2008) Plant form. Timber Press, Portland

    Google Scholar 

  • Benton MJ (2005) Vertebrate palaeontology, 3rd edn. Blackwell, New York

    Google Scholar 

  • Benton MJ, Spencer PS (1995) Fossil reptiles of Great Britain. Chapman & Hall, London

    Book  Google Scholar 

  • Blakey R (2005) Global earth history. Available at: http://jan.ucc.nau.edu/∼rcb7/RCB.html. Accessed 24 Oct 2013

  • Bond WJ, Lee WG, Craine JM (2004) Plant structural defences against browsing birds: a legacy of New Zealand’s extinct moas. OIKOS 104:500–508

    Article  Google Scholar 

  • Bose MN, Pal PK, Harris TM (1985) The Pentoxylon plant. Phil Trans R Soc Lond B 310:77–108

    Article  Google Scholar 

  • Bresinsky A, Körner C, Kadereit JW, Neuhaus G, Sonnewald U (2008) Strasburger—Lehrbuch der Botanik. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Brockie B (2012) Native plants and animals—Unusual plant features. Te Ara–The Encyclopedia of New Zealand. Available at: http://www.teara.govt.nz/en/native-plants-and-animals-overview/page-7. Accessed 24 Oct 2013

  • Burrows CJ (1980) Some empirical information concerning the diet of moas. NZ J Ecol 3:125–130

    Google Scholar 

  • Burrows CJ (1989) Moa browsing: evidence from the Pyramid Valley mire. NZ J Ecol 12[Suppl]:51–56

    Google Scholar 

  • Burrows CJ, McCulloch B, Trotter M (1981) The diet of moas based on gizzard samples from Pyramid Valley, North Canterbury, and Scaife’s Lagoon, Lake Wanaka, Otago. Rec Canterb Mus 9:309–336

    Google Scholar 

  • Carpenter RJ (2012) Proteaceae leaf fossils: phylogeny, diversity, ecology and austral distributions. Bot Rev 78:261–287

    Article  Google Scholar 

  • Chin K (2007) The paleobiological implications of herbivorous dinosaur coprolites from the Upper Cretaceous Two Medicine Formation of Montana: why eat wood? Palaios 22:554–566

    Article  Google Scholar 

  • Cleal CJ, McAllister Rees P, Zijlstra G, Cantrill DJ (2006) A clarification of the type of Nilssoniopteris Nathorst (fossil Gymnospermophyta, Bennettitales). Taxon 55:219–222

  • Cockayne L (1912) Observations concerning evolution, derived from ecological studies in New Zealand. Trans Proc NZ Inst 44:1–30

    Google Scholar 

  • Collins K, Collins K, George AS (2009) Banksias. Bloomings Books, Toorak

    Google Scholar 

  • Cooper A, Atkinson IAE, Lee WG, Worthy TH (1993) Evolution of the moa and their effect on the flora of New Zealand. Trends Ecol Evol 8:433–437

    Article  Google Scholar 

  • Dawson JW (1988) Forest vines to snow tussocks: the story of New Zealand plants. Victoria University Press, Wellington

    Google Scholar 

  • Delevoryas T, Hope RC (1976) More evidence for a slender growth habit in Mesozoic cycadophytes. Rev Palaeobot Palynol 2:93–100

    Article  Google Scholar 

  • Diels L (1897) Vegetationsbiologie von Neu-Seeland. Bot Jahrb Syst Pflanzengesch Pflanzengeogr 22:202–300

    Google Scholar 

  • Fahn A, Cutler DF (1992) Xérophytes. Gebr. Borntraeger, Stuttgart

    Google Scholar 

  • Fastovsky DE, Smith JB (2004) Dinosaur paleoecology. In: Weishampel DB, Dodson P, Osmólska H (eds) The Dinosauria, 2nd edn. University of California Press, Berkeley, pp 614–626

  • Friis EM, Crane PR, Pedersen KR (2011) Early flowers and angiosperm evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • George AS, Gardner CA (1984) The Banksia book. Kangaroo Press, Roseville

    Google Scholar 

  • Gierliński G, Ahlberg A (1994) Late Triassic and Early Jurassic dinosaur footprints in the Höganäs Formation of southern Sweden. Ichnos 3:99–105

    Article  Google Scholar 

  • Gothan W, Weyland H (1973) Lehrbuch der Paläobotanik. BLV, Munich

    Google Scholar 

  • Greenwood RM, Atkinson IAE (1977) Evolution of divaricating plants in New Zealand in relation to moa browsing. Proc NZ Ecol Soc 24:21–33

    Google Scholar 

  • Harris TM (1926) The Rhaetic flora of Scoresby Sound, East Greenland. Medd Grønl 68:45–148

    Google Scholar 

  • Harris TM (1937) The fossil flora of Scoresby Sound, East Greenland. Part 5: Stratigraphic relations of the plant beds. Medd Grønl 112:1–114

    Google Scholar 

  • Harris TM (1944) A revision of Williamsoniella. Phil Trans R Soc Lond B 231:313–328

    Article  Google Scholar 

  • Harris TM (1952) Floral successions in the Estuarine Series of Yorkshire. In: Int Geological Congr: report of the 18th Session, 1948, vol 10. International Geological Congress, London, pp 64–66

  • Harris TM (1964) The Yorkshire Jurassic flora II. Caytoniales, Cycadales & Pteridosperms. Trustees of the British Museum (Natural History), London

  • Harris TM (1969) The Yorkshire Jurassic Flora III. Bennettitales. Trustees of the British Museum (Natural History), London

  • Hilton J, Bateman RM (2006) Pteridosperms are the backbone of seed-plant phylogeny. J Torrey Bot Soc 133:119–168

    Article  Google Scholar 

  • Howe J, Cantrill DJ (2001) Palaeoecology and taxonomy of Pentoxylales from the Albian of Antarctica. Cretac Res 22:779–793

    Article  Google Scholar 

  • Hutchings P, Saenger P (1987) Ecology of mangroves. University of Queensland Press, St Lucia

    Google Scholar 

  • Jin F, Zhang FC, Li ZH, Zhang JY, Li C, Zhou ZH (2008) On the horizon of Protopteryx and the early vertebrate fossil assemblages of the Jehol Biota. Chin Sci Bull 53:2820–2827

    Article  Google Scholar 

  • Jordan GJ, Weston PH, Carpenter RJ, Dillon RA, Brodribb TJ (2008) The evolutionary relations of sunken, covered, and encrypted stomata to dry habitats in Proteaceae. Am J Bot 95:521–530

    Article  Google Scholar 

  • Kelly D (1994) Towards a numerical definition for divaricate (interlaced small-leaved) shrubs. NZ J Bot 32:509–518

    Article  Google Scholar 

  • Kelly D, Ogle MR (1990) A test of the climate hypothesis for divaricate plants. NZ J Ecol 13:51–61

    Google Scholar 

  • Kimura T, Sekido S (1975) Nilssoniocladus n. gen. (Nilssoniaceae n. fam.), newly found from the early Lower Cretaceous of Japan. Palaeontographica B 153:111–118

  • Labandeira CC (2010) The pollination of mid-Mesozoic seed plants and the early history of long-proboscid insects. Ann Mo Bot Gard 9:469–513

    Article  Google Scholar 

  • Labandeira CC, Kvaček J, Mostovski MB (2007) Pollination drops, pollen, and insect pollination of Mesozoic gymnosperms. Taxon 56:663–695

    Article  Google Scholar 

  • Liu Y, Liu Y, Ji S, Yang Z (2006a) U-Pb zircon age for the Daohugou Biota at Ningcheng of Inner Mongolia and comments on related issues. Chin Sci Bull 51:2634–2644

    Article  Google Scholar 

  • Liu Y, Liu Y, Zhang H (2006b) LA-ICPMS zircon U-Pb dating in the Jurassic Daohugou Beds and correlative strata in Ningcheng of Inner Mongolia. Acta Geol Sin (Engl Ed) 80:733–742

    Google Scholar 

  • Macphail MK, Alley NF, Truswell EM, Sluiter IRK (1994) Early tertiary vegetation: evidence from spores and pollen. In: Hill RS (ed) History of the Australian vegetation: Cretaceous to recent. Cambridge University Press, Cambridge, pp 189–261

  • Mägdefrau K (1956) Paläobiologie der Pflanzen. VEB Gustav Fischer, Jena

    Google Scholar 

  • Manaaki Whenua/Landcare research (2013) Ngā Tipu o Aotearoa–New Zealand plants. Available at: http://www.nzflora.landcareresearch.co.nz/. Accessed 24 Oct 2013

  • Mast AR, Thiele K (2007) The transfer of Dryandra R.Br to Banksia L.f. (Proteaceae). Aust Syst Bot 20:63–71

    Article  Google Scholar 

  • McGlone MS, Webb CJ (1981) Selective forces influencing the evolution of divaricating plants. NZ J Ecol 4:20–28

    Google Scholar 

  • McLoughlin S, Tosolini A-M, Nagalingum N, Drinnan AN (2002) The Early Cretaceous (Neocomian) flora and fauna of the lower Strzelecki Group, Gippsland Basin, Victoria, Australia. Assoc Aust Palaeontol Mem 26:1–144

    Google Scholar 

  • McLoughlin S, Carpenter RJ, Pott C (2011) Ptilophyllum muelleri (Ettingsh.) comb. nov. from the Oligocene of Australia—last of the Bennettitales? Int J Plant Sci 172:574–585

  • McLoughlin S, Martin SK, Beattie R (2014) The record of Australian Jurassic plant–arthropod interactions. Gondwana Res. doi:10.1016/j.gr.2013.11.009

    Google Scholar 

  • McQueen DR (2000) Divaricating shrubs in Patagonia and New Zealand. NZ J Ecol 24:69–80

    Google Scholar 

  • Meyen SV (1987) Fundamentals of palaeobotany. Chapman & Hall, New York

    Book  Google Scholar 

  • Milàn J, Gierliński G (2004) A probable thyreophoran (Dinosauria, Ornithischia) footprint from the Upper Triassic of southern Sweden. Bull Geol Soc Den 51:71–75

    Google Scholar 

  • Morgans HS (1997) Early to Middle Jurassic vegetation, climate change and stratigraphic development in north-eastern Europe. PhD dissertation. Oxford University, Oxford

  • Morgans HS, Hesselbo SP, Spicer RA (1999) The seasonal climate of the Early–Middle Jurassic, Cleveland Basin, England. Palaios 14:261–272

    Article  Google Scholar 

  • Nathorst AG (1888) Nya anmärkningar om Williamsonia. Öfvers K Vetensk Akad Förh 6:359–365

    Google Scholar 

  • Nathorst AG (1902) Beiträge zur Kenntnis einiger mesozoischer Cycadophyten. K Sven Vetenskapsakad Handl 36:1–28

    Google Scholar 

  • Nathorst AG (1909a) Paläobotanische Mitteilungen 8. Über Williamsonia, Wielandia, Cycadocephalus und Weltrichia. K Sven Vetenskapsakad Handl 45:3–37

    Google Scholar 

  • Nathorst AG (1909b) Über die Gattung Nilssonia Brongn. mit besonderer Berücksichtigung schwedischer Arten. K Sven Vetenskapsakad Handl 43:3–37

    Google Scholar 

  • Norling E, Ahlberg A, Erlström M, Sivhed U (1993) Guide to the Upper Triassic and Jurassic geology of Sweden. Sver Geol Unders Ser Ca 82:1–71

    Google Scholar 

  • Norman B (2001) Dinosaur feeding. eLS. doi:10.1038/npg.els.0003321

    Google Scholar 

  • Pellew RA (1984) Feeding ecology of a selective browser, the giraffe (Giraffa camelopardalis tippelskirchi). J Zool (Lond) 202:57–81

    Article  Google Scholar 

  • Pollock ML, Lee WG, Walker S, Forrester G (2007) Ratite and ungulate preferences for woody New Zealand plants: influence of chemical and physical traits. NZ J Ecol 31:68–78

  • Pott C (2014) A revision of Wielandiella angustifolia—a shrub-sized bennettite from the Rhaetian–Hettangian of Scania, Sweden, and Jameson Land, Greenland. Int J Plant Sci 175:467–499. doi:10.1086/675577

  • Pott C, McLoughlin S (2009) Bennettitalean foliage from the Rhaetian-Bajocian (latest Triassic–Middle Jurassic) floras of Scania, southern Sweden. Rev Palaeobot Palynol 158:117–166

    Article  Google Scholar 

  • Pott C, McLoughlin S (2011) The Rhaeto-Liassic flora from Rögla, northern Scania, Sweden. Palaeontology 54:1025–1051

    Article  Google Scholar 

  • Pott C, Krings M, Kerp H (2007a) A surface micro-relief on the leaves of Glossophyllum florinii (?Ginkgoales) from the Upper Triassic of Lunz, Austria. Bot J Linn Soc 153:87–95

    Article  Google Scholar 

  • Pott C, Van Konijnenburg-van Cittert JHA, Kerp H, Krings M (2007b) Revision of the Pterophyllum species (Cycadophytina: Bennettitales) in the Carnian (Late Triassic) flora from Lunz, Lower Austria. Rev Palaeobot Palynol 147:3–27

    Article  Google Scholar 

  • Pott C, Krings M, Kerp H (2008a) The Carnian (Late Triassic) flora from Lunz in Lower Austria: Palaeoecological considerations. Palaeoworld 17:172–182

    Article  Google Scholar 

  • Pott C, Labandeira CC, Krings M, Kerp H (2008b) Fossil insect eggs and ovipositional damage on bennettitalean leaf cuticles from the Carnian (Upper Triassic) of Austria. J Paleontol 82:778–789

    Article  Google Scholar 

  • Pott C, Krings M, Kerp H, Friis EM (2010) Reconstruction of a bennettitalean flower from the Carnian (Upper Triassic) of Lunz, Lower Austria. Rev Palaeobot Palynol 159:94–111

    Article  Google Scholar 

  • Pott C, McLoughlin S, Lindström A, Wu SQ, Friis EM (2012a) Baikalophyllum lobatum and Rehezamites anisolobus: two seed plants with “cycadophyte” foliage from the Early Cretaceous of eastern Asia. Int J Plant Sci 173:192–208

  • Pott C, McLoughlin S, Wu SQ, Friis EM (2012b) Trichomes on the leaves of Anomozamites villosus sp. nov. (Bennettitales) from the Daohugou beds (Middle Jurassic), Inner Mongolia, China: mechanical defense against herbivorous arthropods? Rev Palaeobot Palynol 169:48–60

    Article  Google Scholar 

  • Retallack GJ, Dilcher DL (1988) Reconstructions of selected seed ferns. Ann Mo Bot Gard 75:1010–1057

    Article  Google Scholar 

  • Romano M, Whyte MA (2003) Jurassic dinosaur tracks and trackways of the Cleveland Basin, Yorkshire: preservation, diversity and distribution. Proc Yorks Geol Soc 54:185–215

    Article  Google Scholar 

  • Sahni B (1932) A petrified Williamsonia (W. sewardiana, sp. nov.) from the Rajmahal Hills, India. Palaeontol Ind 20:1–19

    Google Scholar 

  • Sahni B (1948) The Pentoxyleae: a new group of Jurassic gymnosperms from the Rajmahal Hills of India. Bot Gaz 110:47–80

    Article  Google Scholar 

  • Sampson SD (2001) Speculations on the socioecology of ceratopsid dinosaurs (Orinthischia: Neoceratopsia). In: Tanke DH, Carpenter K (eds) Mesozoic vertebrate life. Indiana University Press, Bloomington, pp 263–276

    Google Scholar 

  • Schmeissner S, Hauptmann S (1998) Ein Blattschopf von Nilsonia acuminata (Presl) Goeppert aus dem unteren Lias Oberfrankens. Doc Nat 117:1–11

    Google Scholar 

  • Schneiderheinze J (2006) Photoinhibition under drought and high light loads in New Zealand’s divaricate shrubs. PhD dissertation. University of Canterbury, Canterbury

  • Schweitzer H-J, Kirchner M (2003) Die rhäto-jurassischen Floren des Iran und Afghanistans: 13. Cycadophyta III. Bennettitales. Palaeontographica B 264:1–166

  • Schweitzer H-J, Kirchner M, Van Konijnenburg-van Cittert JHA (2000) The Rhaeto-Jurassic flora of Iran and Afghanistan. 12. Cycadophyta II. Nilssoniales. Palaeontographica B 254:1–63

  • Seward AC (1917) Fossil plants—A textbook for students of botany and geology, vol III. Cambridge University Press, Cambridge

    Google Scholar 

  • Sitte P, Ziegler H, Ehrendorfer F, Bresinsky A (1998) Strasburger—Lehrbuch der Botanik. Gustav Fischer, Stuttgart

    Google Scholar 

  • Spicer RA, Herman AB (1996) Nilssoniocladus in the Cretaceous Arctic: new species and biological insights. Rev Palaeobot Palynol 92:229–243

    Article  Google Scholar 

  • Stampfli GM, Borel G (2002) The evolution of the circum-Mediterranean area and the Alpine orogeny. Available at: http://www-sst.unil.ch/Research/plate_tecto/alp_tet_main.htm. Accessed 24 Oct 2013

  • Stearns SC, Hoekstra RF (2005) Evolution—An introduction. Oxford University Press, Oxford

    Google Scholar 

  • Strullu-Derrien C, McLoughlin S, Philippe M, Mørk A, Strullu DG (2012) Arthropod interactions with bennettitalean roots in a Triassic permineralized peat from Hopen, Svalbard Archipelago (Arctic). Palaeogeogr Palaeoclimatol Palaeoecol 348–349:45–58

    Article  Google Scholar 

  • Sweedman L, Merritt D (2006) Australian seeds: a guide to their collection, identification and biology. CSIRO Publishing, Melbourne

    Google Scholar 

  • Takimoto H, Ohana T, Kimura T (1997) Two new Nilssoniocladus species from the Jurassic (Oxfordian) Tochikubo Formation, northeast Honshu, Japan. Paleontol Res 1:180–187

    Google Scholar 

  • Taylor TN, Taylor EL, Krings M (2009) Paleobotany—The biology and evolution of fossil plants. Academic Press/Elsevier, Burlington/Amsterdam

    Google Scholar 

  • Thomas HH (1915) On Williamsoniella, a new type of bennettitalean flower. Phil Trans R Soc Lond B 207:113–148

    Article  Google Scholar 

  • Tidwell WD, Britt BB, Wright WW (2013) Donponoxylon gen. nov., a new spermatophyte axis from the Middle to Late Jurassic of Australia and New Zealand. Rev Palaeobot Palynol 196:36–50

    Article  Google Scholar 

  • Tucker JM (1974) Patterns of parallel evolution of leaf form in new world oaks. Taxon 23:129–154

    Article  Google Scholar 

  • Vajda V, Calner M, Ahlberg A (2013) Palynostratigraphy of dinosaur footprint-bearing deposits from the Triassic–Jurassic boundary interval of Sweden. GFF 135:120–130

    Article  Google Scholar 

  • Van Konijnenburg-van Cittert JHA, Morgans HS (1999) The Jurassic flora of Yorkshire. The Palaeontological Association, London

    Google Scholar 

  • Vishnu-Mitre (1957) Studies on the fossil flora of Nipania (Rajmahal Series) India—Pentoxylae. Palaeobotanist 6:31–46

    Google Scholar 

  • Volynets EB (2010) A new species of Nilssoniocladus Kimura et Sekido from the Lower Cretaceous of the Markovsky Peninsula (southern Primorye). Paleontol J 44:1348–1352

    Article  Google Scholar 

  • Watson J, Cusack HA (2005) Cycadales of the English Wealden. Monogr Palaeontogr Soc 622:1–189

    Google Scholar 

  • Watson J, Sincock CA (1992) Bennettitales of the English Wealden. Monogr Palaeontogr Soc 588:1–228

    Google Scholar 

  • Weishampel DB (1984) Interactions between Mesozoic plants and vertebrates: fructifications and seed predation. N Jb Geol Paläontol, Abh 167:224–250

  • Whitlock JA (2011) Inferences of diplodocoid (Sauropoda: Dinosauria) feeding behavior from snout shape and microwear analyses. PLoS ONE 6:e18304. doi:10.1371/journal.pone.0018304

    Article  Google Scholar 

  • Whyte MA, Romano M (1993) Footprints of a sauropod dinosaur from the Middle Jurassic of Yorkshire. Proc Geol Assoc 104:195–199

    Article  Google Scholar 

  • Whyte MA, Romano M (2001) Probable stegosaurian dinosaur tracks from the Saltwick Formation (Middle Jurassic) of Yorkshire, England. Proc Geol Assoc 112:45–54

    Article  Google Scholar 

  • Willis KJ (2003) Evolution and function of earth’s biomes: temperate forest. In: Cilek V, Smith RH (eds) Encyclopaedia of life support systems (ELOSS), earth system history and natural variability, vol 3. ELOSS Publishers, Isle of Man

    Google Scholar 

  • Worthy TH (1990) An analysis of the distribution and relative abundance of moa species (Aves: Dinornithiformes). NZ J Zool 17:213–241

    Article  Google Scholar 

  • Wrigley JW, Fagg M (1991) Banksias, Waratahs and Grevilleas and all other plants in the Australian Proteaceae family. Collins Angus & Robertson, North Ryde

  • Wu SQ (1999) A preliminary study of the Jehol flora from western Liaoning. Palaeoworld 11:7–37

    Google Scholar 

  • Zheng XT, You HL, Xu X, Dong ZM (2009) An Early Cretaceous heterodontosaurid dinosaur with filamentous integumentary structures. Nature 458:333–336

    Article  Google Scholar 

  • Zhou Q, Barrett PM, Eberth DA (2007) Social behaviour and mass mortality in the basal ceratopsian dinosaur Psittacosaurus (Early Cretaceous, People’s Republic of China). Palaeontology 50:1023–1029

    Article  Google Scholar 

  • Zimmermann W (1933) Paläobotanische und phylogenetische Beiträge I–V. Palaeobiologica 5:321–348

    Google Scholar 

Download references

Acknowledgements

Svend Funder from the Natural History Museum of Denmark, Copenhagen, is thanked for making the Greenland fossils available for study, and Cornelia Dilger-Endrulat from the Botanical Institute of the University of Tübingen, Germany, allowed the loan and study of the Yorkshire specimen. Wang Jun from the Nanjing Institute of Geology and Palaeontology, Academia Sinica (NIGPAS), Nanjing, PR China, and Zheng Xiaoting and Zhang Xiaomei from the Shandong Tianyu Museum of Nature, Pingyi, Shandong, PR China, permitted the publication of the Anomozamites villosus specimens. Pollyanna von Knorring, Palaeobiology Department, Swedish Museum of Natural History, Stockholm, Sweden, made the beautiful illustrations of the reconstructed Williamsoniaceae. CP and SM acknowledge research grants from the Swedish Research Council (Vetenskapsrådet), Stockholm. Sidney Ash (University of New Mexico, Albuquerque, USA) and Michael Krings (Ludwig-Maximilians-University, Munich, Germany) are sincerely thanked for their comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Pott.

Additional information

“This article is a contribution to the special issue “Green planet - 400 million years of terrestrial floras. Papers in honour of JHA van Konijnenburg-van Cittert”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pott, C., McLoughlin, S. Divaricate growth habit in Williamsoniaceae (Bennettitales): unravelling the ecology of a key Mesozoic plant group. Palaeobio Palaeoenv 94, 307–325 (2014). https://doi.org/10.1007/s12549-014-0157-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12549-014-0157-9

Keywords

Navigation