Skip to main content
Log in

Corneal collagen—its role in maintaining corneal shape and transparency

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Corneal collagen has a number of properties that allow it to fulfil its role as the main structural component within the tissue. Fibrils are narrow, uniform in diameter and precisely organised. These properties are vital to maintain transparency and to provide the biomechanical prerequisites necessary to sustain shape and provide strength. This review describes the structure and arrangement of corneal collagen from the nanoscopic to the macroscopic level, and how this relates to the maintenance of the form and transparency of the cornea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aghamohammadzadeh H, Newton RH, Meek KM (2004) X-ray scattering used to map the preferred collagen orientation in the human cornea and limbus. Structure 12:249–256

    PubMed  CAS  Google Scholar 

  • Akhtar S, Bron AJ, Salvi SM, Hawksworth NR, Tuft SJ, Meek KM (2008) Ultrastructural analysis of collagen fibrils and proteoglycans in keratoconus. Acta Ophthalmol Scand 86:764–772

    Google Scholar 

  • Ameen DB, Bishop MF, McMullen T (1998) A lattice model for computing the transmissivity of the cornea and sclera. Biophys J 75:2520–2531. doi:10.1016/S0006-3495(98)77697-0

    PubMed  CAS  Google Scholar 

  • Baselt DR, Revel JP, Baldeschweiler JD (1993) Subfibrillar structure of type I collagen observed by atomic force microscopy. Biophys J 65:2644–2655. doi:10.1016/S0006-3495(93)81329-8

    PubMed  CAS  Google Scholar 

  • Benedek GB (1971) Theory of transparency of the eye. Appl Opt 10:459–473. doi:10.1364/AO.10.000459

    Google Scholar 

  • Bergmanson JP, Horne J, Doughty MJ, Garcia M, Gondo M (2005) Assessment of the number of lamellae in the central region of the normal human corneal stroma at the resolution of the transmission electron microscope. Eye Contact Lens 31:281–287. doi:10.1097/01.ICL.0000165280.94927.0D

    PubMed  Google Scholar 

  • Binder PS, Rock ME, Schmidt C, Anderson JA (1991) High voltage electron microscopy of normal human cornea. Invest Ophthalmol Vis Sci 32:2234–2243

    PubMed  CAS  Google Scholar 

  • Birk DE (2001) Type V collagen:heterotypic type I/V collagen interactions in the regulation of fibril assembly. Micron 32:223–237. doi:10.1016/S0968-4328(00)00043-3

    PubMed  CAS  Google Scholar 

  • Boote C, Dennis S, Newton RH, Puri H, Meek KM (2003) Collagen fibrils appear more closely packed in the prepupillary cornea: optical and biomechanical implications. Invest Ophthalmol Vis Sci 44:2941–2948. doi:10.1167/iovs.03-0131

    PubMed  Google Scholar 

  • Boote C, Dennis S, Meek KM (2004) Spatial mapping of collagen fibril organisation in primate cornea–an x-ray diffraction investigation. J Struct Biol 146:359–367. doi:10.1016/j.jsb.2003.12.009

    PubMed  CAS  Google Scholar 

  • Boote C, Hayes S, Abahussin M, Meek KM (2006) Mapping collagen organization in the human cornea: left and right eyes are structurally distinct. Invest Ophthalmol Vis Sci 46:901–908. doi:10.1167/iovs.05-0893

    Google Scholar 

  • Boote C, Hayes S, Young RD, Kamma-Lorger C, Hocking PM, Elsheikh A, Inglehearn CF, Ali M, Meek KM (2009) Ultrastructural changes in the retinopathy, globe enlarged (rge) chick cornea. J Struct Biol 166(2):195–204

    Google Scholar 

  • Chakravarti S, Magnuson T, Lass JH, Jepsen KJ, LaMantia C, Carroll H (1988) Lumican regulates collagen fibril assembly:skin fragility and corneal opacity in the absence of lumican. J Cell Biol 141:1277–1286. doi:10.1083/jcb.141.5.1277

    Google Scholar 

  • Cogan DG, Kinsey VE (1942) The cornea. 1. Transfer of water and sodium chloride by osmosis and diffusion through excised cornea. Arch Ophthalmol 27:466–482

    CAS  Google Scholar 

  • Cooper LJ, Bentley AJ, Nieduszynski IA, Talabani S, Thomson A, Utani A, Shinkai H, Fullwood NJ, Brown GM (2006) The role of dermatopontin in the stromal organisation of the cornea. Invest Ophthalmol Vis Sci 47:3303–3310. doi:10.1167/iovs.05-1426

    PubMed  Google Scholar 

  • Cox JL, Farrell RA, Hart RW, Langham ME (1970) The transparency of the mammalian cornea. J Physiol 210:601–616

    PubMed  CAS  Google Scholar 

  • Craig AS, Parry DAD (1981) Collagen fibrils of the vertebrate cornea stroma. J Ultrastruct Res 74:232–239. doi:10.1016/S0022-5320(81)80081-0

    PubMed  CAS  Google Scholar 

  • Craig AS, Robertson JG, Parry DA (1986) Preservation of corneal collagen fibril structure using low-temperature procedures for electron moicroscopy. J Ultrastruct Mol Struct Res 96:172–175. doi:10.1016/0889-1605(86)90018-2

    PubMed  CAS  Google Scholar 

  • Daxer A, Fratzl P (1997) Collagen fibril organisation in the human corneal stroma and its implications in keratoconus. Invest Ophthalmol Vis Sci 38:121–129

    PubMed  CAS  Google Scholar 

  • Daxer A, Misof K, Grabner B, Ettl A, Fratzl P (1998) Collagen fibrils in the human corneal stroma:structure and ageing. Invest Ophthalmol Vis Sci 39:644–647

    PubMed  CAS  Google Scholar 

  • Doughty MJ, Bergmanson JPG (2006) Assessment of the apparent intra- and inter-sample variability in the collagen fibril diameter in the posterior corneal stroma of rabbits. A transmission electron microscope study. Ophthalmic Res 38:335–342. doi:10.1159/000096228

    Google Scholar 

  • Elliott GF, Hodson SA (1998) Cornea, and the swelling of polyelectrolyte gels of biological interest. Rep Prog Phys 61:1325–1365. doi:10.1088/0034-4885/61/10/001

    CAS  Google Scholar 

  • Elliott GF, Sayers Z, Timmins PA (1982) Neutron diffraction studies of the corneal stroma. J Mol Biol 155:389–393. doi:10.1016/0022-2836(82)90011-0

    PubMed  CAS  Google Scholar 

  • Farrell RA, Hart RW (1969) On the theory of the spatial organisation of macromolecules in connective tissue. Bull Math Biophys 31:727–760. doi:10.1007/BF02477784

    PubMed  CAS  Google Scholar 

  • Fratzl P, Daxer A (1993) Structural transformation of collagen fibrils in corneal stroma during drying. An x-ray scattering study. Biophys J 64:1210–1214. doi:10.1016/S0006-3495(93)81487-5

    CAS  Google Scholar 

  • Freund DE, McCally RL, Farrell RA, Cristol SM, L’Hernault NL, Edelhauser HF (1995) ultrastructure in anterior and posterior stroma of perfused human and rabbit corneas. Invest Ophthalmol Vis Sci 36:1508–1523

    PubMed  CAS  Google Scholar 

  • Gisselberg M, Clark JI, Vaezy S, Osgood TB (1991) A quantitative evaluation of Fourier components in transparent and opaque calf cornea. Am J Anat 191:408–418. doi:10.1002/aja.1001910408

    PubMed  CAS  Google Scholar 

  • Goh KL, Holmes DF, Lu H-Y, Richardson S, Kadler KE, Purslow PP, Wess TJ (2008) Ageing changes in the tensile properties of tendons: Influence of collagen fibril volume fraction. J Biomech Eng 130:1–8. doi:10.1115/1.2898732

    Google Scholar 

  • Goodfellow JM, Elliott GF, Woolgar AE (1978) X-ray diffraction studies of the corneal stroma. J Mol Biol 119:237–252

    Google Scholar 

  • Gordon MK, Foley JW, Linsenmayer TF, Fitch JM (1996) Temporal expression of types XII and XIV collagen mRNA and protein during avian corneal development. Dev Dyn 206:49–58. doi:10.1002/(SICI)1097-0177(199605)206:1<49::AID-AJA5>3.0.CO;2-0

    PubMed  CAS  Google Scholar 

  • Gyi TJ, Meek KM, Elliott GF (1988) Collagen interfibrillar distances in corneal stroma using synchrotron X-ray diffraction: a species study. Int J Biol Macromol 10:265–269. doi:10.1016/0141-8130(88)90002-5

    CAS  Google Scholar 

  • Han M, Giese G, Bille JF (2005) Second harmonic generation imaging of collagen fibrils in cornea and sclera. Opt Express 13:5791–5797. doi:10.1364/OPEX.13.005791

    PubMed  CAS  Google Scholar 

  • Harding JJ, Crabbe MJC, Panjwani NA (1980) Corneal collagen. In: Robert L, Robert A (eds) Biochemistry of normal and pathological connective tissues. Colloques Internationaux du C.N.R.S. 287: 51–64

  • Hayashida Y, Akama TO, Beecher N, Lewis P, Young RD, Meek KM, Kerr B, Hughes CE, Caterson B, Tanigami A, Nakayama J, Fukada MN, Tano Y, Nishida K, Quantock AJ (2006) Matrix morphogenesis in cornea is mediated by the modification of keratan sulfate by GlcNAc 6-O sulphotransferase. Proc Natl Acad Sci USA 103:13333–13338. doi:10.1073/pnas.0605441103

    PubMed  CAS  Google Scholar 

  • Hayes S, Boote C, Lewis J, Sheppard J, Abahussin M, Quantock AJ, Purslow C, Votruba M, Meek KM (2007) Comparative study of fibrillar collagen arrangement in the corneas of primates and other mammals. Anat Rec 290:1542–1550. doi:10.1002/ar.20613

    Google Scholar 

  • Hirsch M, Prenant G, Renard G (2001) The three-dimensional supramolecular organisation of the extracellular matrix in human and rabbit corneal stroma as revealed by ultrarapid-freezing and deep-etching methods. Exp Eye Res 72:123–135. doi:10.1006/exer.2000.0935

    PubMed  CAS  Google Scholar 

  • Hodson SA, Miller F (1976) The bicarbonate ion pump in the endothelium which regulates the hydration of rabbit cornea. J Physiol 263:563–577

    PubMed  CAS  Google Scholar 

  • Hodson S, Kaila D, Hammond S, Rebello G, Al-Omari Y (1992) Transient chloride binding as a contributory factor to corneal stromal swelling in the ox. J Physiol 450:89–103

    PubMed  CAS  Google Scholar 

  • Holmes DF, Kadler KE (2004) The precision of lateral size control in the assembly of corneal collagen fibrils. J Mol Biol 345:773–784. doi:10.1016/j.jmb.2004.10.078

    PubMed  CAS  Google Scholar 

  • Holmes DF, Gilpin CJ, Baldock C, Ziese U, Koster AJ, Kadler KE (2001) Corneal collagen fibril structure in three dimensions: structural insights into fibril assembly, mechanical properties, and tissue organization. Proc Natl Acad Sci USA 98:7307–7312. doi:10.1073/pnas.111150598

    PubMed  CAS  Google Scholar 

  • Howell SJ, Doane KJ (1998) Type VI collagen increases cell survival and prevents anti-beta 1 integrin-mediated apoptosis. Exp Cell Res 241:230–241. doi:10.1006/excr.1998.4051

    PubMed  CAS  Google Scholar 

  • Huang Y, Bron AJ, Meek KM, Velodi A, McDonald B (1996) Ultrastructural study of the cornea in a bone-marrow transplanted Hurler syndrome patient. Exp Eye Res 62:377–387. doi:10.1006/exer.1996.0043

    PubMed  CAS  Google Scholar 

  • Hulmes DJS, Wess TJ, Prockop DJ, Fratzl P (1995) Radial packing, order, and disorder in collagen fibrils. Biophys J 68:1661–1670. doi:10.1016/S0006-3495(95)80391-7

    PubMed  CAS  Google Scholar 

  • Ihanamäki T, Pelliniemi LJ, Vuorio E (2004) Collagens and collagen-related matrix components in the human and mouse eye. Prog Retin Eye Res 23:403–434. doi:10.1016/j.preteyeres.2004.04.002

    PubMed  Google Scholar 

  • Itoh T, Klein L, Geil PH (1981) Age dependence of collagen fibrils and subfibril diameters revealed by transverse freeze-fracture and -etching technique. J Microsc 125:343–357

    Google Scholar 

  • Jayasuriya AC, Scheinbeim JI, Lubkin V, Bennett G, Kramer P (2003) Piezoelectric and mechanical properties in bovine cornea. J Biomed Mater Res 66A:260–265. doi:10.1002/jbm.a.10536

    CAS  Google Scholar 

  • Kamma-Lorger CS, Boote C, Young RD, Hayes S, Quantock AJ, Meek KM (2009) Depth profile study of collagen molecular structure in normal human cornea. Acta Ophthalmol (Copenh) 86:S243

    Google Scholar 

  • Kanai A, Kaufman HE (1973) Electron microscopic studies of swollen corneal stroma. Ann Ophthalmol 5:178–190

    PubMed  CAS  Google Scholar 

  • Knupp C, Lewis PN, Young, RD, Pinali, C, Meek, KM, Quantock AJ (2009) Three-dimensional electron tomography throws new light on the structure of the cornea. ARVO e-abstract 4532/D77. Available at www.iovs.org

  • Kobayashi A (2008) In vivo laser confocal microscopic analysis of the interface between Bowman’s layer and the stroma of the cornea. Nippon Ganka Gakkai Zasshi 112:947–952

    PubMed  Google Scholar 

  • Koch M, Laub F, Zhou P, Hahn R, Tanaka S, Burgeson RE, Gerecke DR, Ramirez F, Gordon MK (2003) Collagen XXIV, a vertebrate fibrillar collagen with structural features of invertebrate collagens: selective expression in developing cornea and bone. J Biol Chem 278:43236–43244. doi:10.1074/jbc.M302112200

    PubMed  CAS  Google Scholar 

  • Komai Y, Ushiki T (1991) The three-dimensional organisation of collagen fibrils in the human cornea and sclera. Invest Ophthalmol Vis Sci 32:2244–2258

    PubMed  CAS  Google Scholar 

  • Kostyuk O, Nalovina O, Mubard TM, Regini JW, Meek KM, Quantock AJ, Elliott GF, Hodson SA (2002) transparency of the bovine corneal stroma at physiological hydration and its dependence on concentration of the ambient ion. J Physiol 2:633–642. doi:10.1113/jphysiol.2002.021527

    Google Scholar 

  • Leonard DW, Meek KM (1997) Refractive indices of the collagen fibrils and extrafibrillar material of the corneal stroma. Biophys J 72:1382–1387. doi:10.1016/S0006-3495(97)78784-8

    PubMed  CAS  Google Scholar 

  • Linsenmayer TF, Gibney E, Igoe F, Gordon MK, Fitch JM, Fessler LI, Birk DE (1993) Type V collagen: molecular structure and fibrillar organization of the chicken alpha-1(V) NH2-terminal domain, a putative regulator of corneal fibrillogenesis. J Cell Biol 121:1181–1189. doi:10.1083/jcb.121.5.1181

    PubMed  CAS  Google Scholar 

  • Malik NS, Moss SJ, Ahmed N, Furth AJ, Wall RS, Meek KM (1992) Ageing of the human corneal stroma: structural and biochemical changes. Biochim Biophys Acta 1138:222–228

    PubMed  CAS  Google Scholar 

  • Marchini M, Morocutti M, Ruggeri A, Koch MHJ, Bigi A, Roveri N (1986) Differences in the fibril structure of corneal and tendon collagen. An electron microscopy and x-ray diffraction investigation. Connect Tissue Res 15:269–281. doi:10.3109/03008208609001985

    PubMed  CAS  Google Scholar 

  • Maroudas A, Wachtel E, Grushko G, Katz EP, Weinberg P (1991) The effect of osmotic and mechanical pressures on water partitioning in articular cartilage. Biochim Biophys Acta 1073:285–294

    PubMed  CAS  Google Scholar 

  • Mathew JH, Bergmanson JPG, Doughty MJ (2008) Fine structure of the interface between the anterior limiting lamina and the anterior stromal fibrils of the human cornea. Invest Ophthalmol Vis Sci 49:3914–3918. doi:10.1167/iovs.07-0707

    PubMed  Google Scholar 

  • Maurice DM (1957) The structure and transparency of the cornea. J Physiol 136:263–286

    PubMed  CAS  Google Scholar 

  • Maurice DM (1969) Cornea and Sclera. In: Davson H (ed) The eye. Academic Press, London

    Google Scholar 

  • McCally RL, Freund DE, Zorn A, Bonney-Ray J, Grebe R, de la Cruz Z, Green WR (2007) Light scattering and ultrastructure of healed penetrating corneal wounds. Invest Ophthalmol Vis Sci 48:157–165. doi:10.1167/iovs.06-0935

    PubMed  Google Scholar 

  • Meek KM (2008) The cornea and sclera. In: Fratzl P (ed) Collagen. Structure and biomechanics. Springer Science +Business Media, New York, pp 359–396

    Google Scholar 

  • Meek KM, Boote C (2004) The organization of collagen in the corneal stroma. Exp Eye Res 78:503–512. doi:10.1016/j.exer.2003.07.003

    PubMed  CAS  Google Scholar 

  • Meek KM, Fullwood NJ (2001) Corneal and scleral collagens—a microscopists perspective. Micron 32:261–272. doi:10.1016/S0968-4328(00)00041-X

    PubMed  CAS  Google Scholar 

  • Meek KM, Holmes DF (1983) Interpretation of the electron microscopical appearance of collagen fibrils from corneal stroma. Int J Biol Macromol 5:17–25. doi:10.1016/0141-8130(83)90073-9

    CAS  Google Scholar 

  • Meek KM, Leonard DW (1993) The Ultrastructure of the corneal stroma: a comparative study. Biophys J 64:273–280. doi:10.1016/S0006-3495(93)81364-X

    PubMed  CAS  Google Scholar 

  • Meek KM, Elliott GF, Sayers W, SB KM (1981) Interpretation of the meridional X-ray diffraction pattern from collagen fibrils in corneal stroma. J Mol Biol 149:477–488. doi:10.1016/0022-2836(81)90482-4

    PubMed  CAS  Google Scholar 

  • Meek KM, Elliott GF, Nave C (1986) A synchrotron x-ray diffraction study of bovine cornea stained with cupromeronic blue. Coll Res Rel 6:203–218

    CAS  Google Scholar 

  • Meek KM, Blamires T, Elliott GF, Gyi T, Nave C (1987) The organisation of collagen fibrils in the human corneal stroma: A synchrotron X-ray diffraction study. Curr Eye Res 6:841–846. doi:10.3109/02713688709034853

    PubMed  CAS  Google Scholar 

  • Meek KM, Fullwood NJ, Cooke PH, Elliott GF, Maurice DM, Quantock AJ, Wall RS, Worthington CR (1991) Synchrotron X-ray diffraction studies of the cornea with implications for stromal hydration. Biophys J 60:467–474. doi:10.1016/S0006-3495(91)82073-2

    PubMed  CAS  Google Scholar 

  • Meek KM, Leonard DW, Connon CJ, Dennis S, Meek KM (2003a) Transparency, swelling and scarring in the corneal stroma. Eye 17:927–936. doi:10.1038/sj.eye.6700574

    CAS  Google Scholar 

  • Meek KM, Quantock AJ, Boote C, Liu CY, Kao WW-Y (2003b) An x-ray scattering investigation of corneal structure in keratocan-deficient mice. Matrix Biol 22:467–475. doi:10.1016/S0945-053X(03)00081-7

    CAS  Google Scholar 

  • Meek KM, Dennis S, Khan S (2003c) Changes in the refractive index of the stroma and its extrafibrillar matrix when the cornea swells. Biophys J 85:2205–2212. doi:10.1016/S0006-3495(03)74646-3

    CAS  Google Scholar 

  • Meller D, Peters K, Meller K (1997) Human cornea and sclera studied by atomic force microscopy. Cell Tissue Res 288:111–118. doi:10.1007/s004410050798

    PubMed  CAS  Google Scholar 

  • Miyagawa A, Kobayashi M, Fujita Y, Hamdy O, Hirano K, Nakamura M, Miyake Y (2001) Surface ultrastructure of collagen fibrils and their association with proteoglycans in human cornea and sclera by atomic force microscopy and energy-filtering transmission electron microscopy. Cornea 20:651–656. doi:10.1097/00003226-200108000-00019

    PubMed  CAS  Google Scholar 

  • Morishige N, Petroll WM, Nishida T, Kenney MC, Jester JV (2006) Noninvasive corneal stromal collagen imaging using two-photon-generated second-harmonic signals. J Cataract Refract Surg 32:1784–1791. doi:10.1016/j.jcrs.2006.08.027

    PubMed  Google Scholar 

  • Müller LJ, Pels E, Vrensen GFJM (2001) The specific architecture of the anterior stroma accounts for maintenance of corneal curvature. Br J Ophthalmol 85:437–443. doi:10.1136/bjo.85.4.437

    PubMed  Google Scholar 

  • Müller LJ, Pels E, Schurmans LRH, Vrensen GFJM (2004) A new three-dimensional model of the organisation of proteoglycans and collagen fibrils in the human corneal stroma. Exp Eye Res 78:493–501. doi:10.1016/S0014-4835(03)00206-9

    PubMed  Google Scholar 

  • Naylor EJ (1953) Polarized light studies of corneal structure. Br J Ophthalmol 37:77–84. doi:10.1136/bjo.37.2.77

    PubMed  CAS  Google Scholar 

  • Newton RH, Meek KM (1998a) Circum-corneal annulus of collagen fibrils in the human limbus. Invest Ophthalmol Vis Sci 39:1125–1134

    PubMed  CAS  Google Scholar 

  • Newton RH, Meek KM (1998b) The integration of the corneal and limbal fibrils in the human eye. Biophys J 75:2508–2512. doi:10.1016/S0006-3495(98)77695-7

    PubMed  CAS  Google Scholar 

  • Orgel JPRO, Irving TC, Miller A, Wess TJ (2006) Microfibrillar structure of type I collagen in situ. Proc Natl Acad Sci USA 103:9001–9005. doi:10.1073/pnas.0502718103

    PubMed  CAS  Google Scholar 

  • Ottani V, Martini D, Franchi M, Ruggeri A, Raspanti M (2002) Hierarchical structures in fibrillar collagens. Micron 33:587–596. doi:10.1016/S0968-4328(02)00033-1

    PubMed  CAS  Google Scholar 

  • Parry DAD (1988) The molecular and fibrillar structure of collagen and its relationship to the mechanical properties of connective tissue. Biophys Chem 29:195–209. doi:10.1016/0301-4622(88)87039-X

    PubMed  CAS  Google Scholar 

  • Parry DA, Craig AS (1979) Electron microscope evidence for an 80A unit in collagen fibrils. Nature 282:213–215. doi:10.1038/282213a0

    PubMed  CAS  Google Scholar 

  • Parry DA, Barnes GR, Craig AS (1978) A comparison of the size distribution of collagen fibrils in connective tissues as a function of age and a possible relation between fibril size distribution and mechanical properties. Proc R Soc Lond B Biol Sci 203:305–321. doi:10.1098/rspb.1978.0107

    PubMed  CAS  Google Scholar 

  • Payrau P, Pouliquen Y, Faure JP, Offret G (1967) La Transparence de la Cornée, la Mécanismes de ses Altérations. Masson et Cie, Paris

    Google Scholar 

  • Pinsky P, Datye V (1991) A microstructurally-based finite element model of the incised human cornea. J Biomech 10:907–922. doi:10.1016/0021-9290(91)90169-N

    Google Scholar 

  • Polack FM (1961) Morphology of the cornea. 1. Study with silver stains. Am J Ophthalmol 51:1051–1056

    PubMed  CAS  Google Scholar 

  • Prum RO, Torres RH (2004) Structural colouration of mammalian skin:convergent evolution of coherently scattering dermal collagen arrays. J Exp Biol 207:2157–2172. doi:10.1242/jeb.00989

    PubMed  Google Scholar 

  • Quantock AJ, Young RD (2008) Development of the corneal stroma, and the collagen–proteoglycan associations that help define its structure and function. Dev Dyn 237:2607–2621. doi:10.1002/dvdy.21579

    PubMed  Google Scholar 

  • Quantock AJ, Meek KM, Fullwood NJ, Zabel RW (1993) Scheie’s syndrome: the architecture of corneal collagen and distribution of corneal proteoglycans. Can J Ophthalmol 28:266–272

    PubMed  CAS  Google Scholar 

  • Quantock AJ, Meek KM, Chakravarti S (2001) An x-ray diffraction investigation of corneal structure in lumican-deficient mice. Invest Ophthalmol Vis Sci 42:1750–1756

    PubMed  CAS  Google Scholar 

  • Quantock AJ, Boote C, Young RD, Hayes S, Hidetoshi T, Kawasaki S, Ohta N, Iida T, Yagi N, Kinoshita S, Meek KM (2007) Small-angle fibre diffraction studies of corneal matrix structure: a depth-profiled investigation of the human eye-bank cornea. J Appl Crystallography 40:s335–s340

    CAS  Google Scholar 

  • Radner W, Zehetmayer M, Aufreiter R, Mallinger R (1998) Interlacing and cross-angle distribution of collagen lamellae in the human cornea. Cornea 17:537–543. doi:10.1097/00003226-199809000-00012

    PubMed  CAS  Google Scholar 

  • Rawe IM, Leonard DW, Meek KM (1997) X-ray diffraction and transmission electron microscopy of Morquio syndrome type A cornea: a structural analysis. Cornea 16:369–376. doi:10.1097/00003226-199705000-00021

    PubMed  CAS  Google Scholar 

  • Regini JW, Elliott GF, Hodson SA (2004) The ordering of corneal collagen fibrils with increasing ionic strength. J Mol Biol 336:179–186. doi:10.1016/j.jmb.2003.12.001

    PubMed  CAS  Google Scholar 

  • Ricard-Blum S, Ruggiero F (2005) The collagen superfamily: from the extracellular matrix to the cell membrane. Pathol Biol (Paris) 53:430–442. doi:10.1016/j.patbio.2004.12.024

    CAS  Google Scholar 

  • Sandberg-Lall M, Hagg PO, Wahlstrom I, Pihlajaniemi T (2000) Type XIII collagen is widely expressed in the adult and developing human eye and accentuated in the ciliary muscle, the optic nerve and the neural retina. Exp Eye Res 70:401–410. doi:10.1006/exer.1998.0826

    PubMed  CAS  Google Scholar 

  • Sayers Z, Koch MHJ, Whitburn SB, Meek KM, Elliott GF, Harmsen A (1982) Synchrotron x-ray diffraction study of corneal stroma. J Mol Biol 160:593–607. doi:10.1016/0022-2836(82)90317-5

    PubMed  CAS  Google Scholar 

  • Scott JE, Haigh M (1985) ‘Small’-proteoglycan: collagen interactions: Keratan sulphate proteoglycan associates with rabbit corneal collagen fibrils at the ‘a’ and ‘c’ bands. Biosci Rep 5:765–774. doi:10.1007/BF01119875

    PubMed  CAS  Google Scholar 

  • Vukusik P, Sambles JR (2003) Photonic structures in biology. Nature 424:852–855. doi:10.1038/nature01941

    Google Scholar 

  • Wess TJ (2008) Collagen fibrillar structure and hierarchies. In: Fratzl P (ed) Collagen. Structure and mechanics. Springer Science +Business Media, New York, pp 49–48

    Google Scholar 

  • Wessel H, Anderson S, Fite D, Halvas E, Hempel J, SundarRaj N (1997) Type XII collagen contributes to diversities in human corneal and limbal extracellular matrices. Invest Ophthalmol Vis Sci 38:2408–2422

    PubMed  CAS  Google Scholar 

  • Wollensack G, Spöerl E, Seiler T (2003) Treatment of keratoconus by collagen crosslinking. Ophthalmologe 100:44–49. doi:10.1007/s00347-002-0700-3

    Google Scholar 

  • Worthington CR (1984) The structure of the cornea. Q Rev Biophys 17:423–451

    PubMed  CAS  Google Scholar 

  • Worthington CR, Inouye H (1985) X-ray diffraction study of the cornea. Int J Biol Macromol 7:2–8. doi:10.1016/0141-8130(85)90057-1

    CAS  Google Scholar 

  • Yamamoto S, Hashizume H, Hitomi J, Shigeno M, Sawaguchi S, Abe H, Ushiki T (2000) The subfibrillar arrangement of corneal and scleral collagens as revealed by scanning electron and atomic force microscopy. Arch Histol Cytol 63:127–135. doi:10.1679/aohc.63.127

    PubMed  CAS  Google Scholar 

  • Yamamoto S, Hitomi J, Sawaguchi S, Abe H, Shigeno M, Ushiki T (2002) Observation of human corneal and scleral collagen fibrils by atomic force microscopy. Jpn J Ophthalmol 46:496–501. doi:10.1016/S0021-5155(02)00558-0

    PubMed  Google Scholar 

  • Yamauchi M, Chandler GS, Tanzawa H, Katz EP (1996) Cross-linking and the molecular packing of corneal collagen. Biochem Biophys Res Commun 219:311–315. doi:10.1006/bbrc.1996.0229

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The corneal research programme at Cardiff University is supported by the MRC, BBSRC, EPSRC, STFC and ESRF. Keith Meek is a Royal Society/Wolfson Merit Award holder. The author thanks Dr. C. Boote for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith M. Meek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meek, K.M. Corneal collagen—its role in maintaining corneal shape and transparency. Biophys Rev 1, 83–93 (2009). https://doi.org/10.1007/s12551-009-0011-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-009-0011-x

Keywords

Navigation