Skip to main content
Log in

Mechanisms of SR calcium release in healthy and failing human hearts

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Normal heart contraction and rhythm relies on the proper flow of calcium ions (Ca2+) into cardiac cells and between their intracellular organelles, and any disruption can lead to arrhythmia and sudden cardiac death. Electrical excitation of the surface membrane activates voltage-dependent L-type Ca2+ channels to open and allow Ca2+ to enter the cytoplasm. The subsequent increase in cytoplasmic Ca2+ concentration activates calcium release channels (RyR2) located at specialised Ca2+ release sites in the sarcoplasmic reticulum (SR), which serves as an intracellular Ca2+ store. Animal models have provided valuable insights into how intracellular Ca2+ transport mechanisms are altered in human heart failure. The aim of this review is to examine how Ca2+ release sites are remodelled in heart failure and how this affects intracellular Ca2+ transport with an emphasis on Ca2+ release mechanisms in the SR. Current knowledge on how heart failure alters the regulation of RyR2 by Ca2+ and Mg2+ and how these mechanisms control the activity of RyR2 in the confines of the Ca2+ release sites is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ai X, Curran JW, Shannon TR, Bers DM, Pogwizd SM (2005) Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Circ Res 97:1314–1322

    Article  CAS  PubMed  Google Scholar 

  • Asghari P, Schulson M, Scriven DR, Martens G, Moore ED (2009) Axial tubules of rat ventricular myocytes form multiple junctions with the sarcoplasmic reticulum. Biophys J 96:4651–4660. doi:10.1016/j.bpj.2009.02.058

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Asghari P, Scriven DR, Sanatani S, Gandhi SK, Campbell AI, Moore ED (2014) Nonuniform and variable arrangements of ryanodine receptors within mammalian ventricular couplons. Circ Res 115:252–262. doi:10.1161/CIRCRESAHA.115.303897

    Article  CAS  PubMed  Google Scholar 

  • Baddeley D, Jayasinghe ID, Lam L, Rossberger S, Cannell MB, Soeller C (2009) Optical single-channel resolution imaging of the ryanodine receptor distribution in rat cardiac myocytes. Proc Natl Acad Sci USA 106:22275–22280. doi:10.1073/pnas.0908971106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Belevych AE, Terentyev D, Terentyeva R et al (2011) The relationship between arrhythmogenesis and impaired contractility in heart failure: role of altered ryanodine receptor function. Cardiovasc Res 90:493–502. doi:10.1093/cvr/cvr025

  • Bers DM (2001) Excitation-contraction coupling and cardiac contractile force, 2nd edn. Kluwer Academic Publications, Dordrecht

    Book  Google Scholar 

  • Bers DM (2002a) Calcium and cardiac rhythms: physiological and pathophysiological. Circ Res 90:14–17

    CAS  PubMed  Google Scholar 

  • Bers DM (2002b) Cardiac excitation-contraction coupling. Nature 415:198–205

    Article  CAS  PubMed  Google Scholar 

  • Bers DM (2006) Altered cardiac myocyte Ca regulation in heart failure. Physiology (Bethesda) 21:380–387

    Article  CAS  Google Scholar 

  • Bers DM, Stiffel VM (1993) Ratio of ryanodine to dihydropyridine receptors in cardiac and skeletal muscle and implications for E-C coupling. Am J Physiol 264:C1587–C1593

    CAS  PubMed  Google Scholar 

  • Bers DM, Eisner DA, Valdivia HH (2003) Sarcoplasmic reticulum Ca2+ and heart failure: roles of diastolic leak and Ca2+ transport. Circ Res 93:487–490

    Article  CAS  PubMed  Google Scholar 

  • Braunwald E, Chidsey CA (1965) The adrenergic nervous system in the control of the normal and failing heart. Proc R Soc Med 58:1063–1066

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bristow MR, Minobe W, Rasmussen R et al (1982) Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med 307:205–211. doi:10.1056/NEJM198207223070401

  • Brochet DX, Yang D, Di Maio A, Lederer WJ, Franzini-Armstrong C, Cheng H (2005) Ca2+ blinks: rapid nanoscopic store calcium signaling. Proc Natl Acad Sci USA 102:3099–3104. doi:10.1073/pnas.0500059102

  • Cannell MB, Kong CH, Imtiaz MS, Laver DR (2013) Control of sarcoplasmic reticulum Ca2+ release by stochastic RyR gating within a 3D model of the cardiac dyad and importance of induction decay for CICR termination. Biophys J 104:2149–2159. doi:10.1016/j.bpj.2013.03.058

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chakraborti S, Chakraborti T, Mandal M, Mandal A, Das S, Ghosh S (2002) Protective role of magnesium in cardiovascular diseases: a review. Mol Cell Biochem 238:163–179

    Article  CAS  PubMed  Google Scholar 

  • Chen SR, Li P, Zhao M, Li X, Zhang L (2002) Role of the proposed pore-forming segment of the Ca2+ release channel (ryanodine receptor) in ryanodine interaction. Biophys J 82:2436–2447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen W, Wang R, Chen B et al (2014) The ryanodine receptor store-sensing gate controls Ca2+ waves and Ca2+−triggered arrhythmias. Nat Med 20:184–192. doi:10.1038/nm.3440

  • Ching LL, Williams AJ, Sitsapesan R (2000) Evidence for Ca 2+ activation and inactivation sites on the luminal side of the cardiac ryanodine receptor complex. Circ Res 87:201–206

  • Cohn JN, Levine TB, Olivari MT et al (1984) Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 311:819–823. doi:10.1056/NEJM198409273111303

  • Crossman DJ, Ruygrok PR, Soeller C, Cannell MB (2010) Changes in the organization of excitation-contraction coupling structures in failing human heart. PLoS One 6:e17901. doi:10.1371/journal.pone.0017901

    Article  Google Scholar 

  • Dash R, Frank KF, Carr AN, Moravec CS, Kranias EG (2001) Gender influences on sarcoplasmic reticulum Ca2+ handling in failing human myocardium. J Mol Cell Cardiol 33:1345–1353. doi:10.1006/jmcc.2001.1394

    Article  CAS  PubMed  Google Scholar 

  • Dulhunty AF, Beard NA, Pouliquin P, Casarotto MG (2007) Agonists and antagonists of the cardiac ryanodine receptor: potential therapeutic agents? Pharmacol Ther 113:247–263

    Article  CAS  PubMed  Google Scholar 

  • Eisner DA, Trafford AW (2002) Heart failure and the ryanodine receptor: does Occam’s razor rule? Circ Res 91:979–981

    Article  CAS  PubMed  Google Scholar 

  • Eisner DA, Trafford AW, Diaz ME, Overend CL, O’Neill SC (1998) The control of Ca release from the cardiac sarcoplasmic reticulum: regulation versus autoregulation. Cardiovasc Res 38:589–604

    Article  CAS  PubMed  Google Scholar 

  • Frank KF, Bolck B, Brixius K, Kranias EG, Schwinger RH (2002) Modulation of SERCA: implications for the failing human heart. Basic Res Cardiol 97[Suppl 1]:I72–I178

    PubMed  Google Scholar 

  • Franzini-Armstrong C, Protasi F (1997) Ryanodine receptors of striated muscles: a complex channel capable of multiple interactions. Physiol Rev 77:699–729

    CAS  PubMed  Google Scholar 

  • George CH (2008) Sarcoplasmic reticulum Ca2+ leak in heart failure: mere observation or functional relevance? Cardiovasc Res 77:302–314. doi:10.1093/cvr/cvm006

    Article  CAS  PubMed  Google Scholar 

  • Go LO, Moschella MC, Watras J, Handa KK, Fyfe BS, Marks AR (1995) Differential regulation of two types of intracellular calcium release channels during end-stage heart failure. J Clin Invest 95:888–894. doi:10.1172/JCI117739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Godt RE, Nosek TM, Maughan DW (1988) Changes of intracellular milieu with fatigue or hypoxia depress contraction of skinned rabbit skeletal and cardiac muscle on the composition of the cytosol of relaxed skeletal muscle of the frog. J Physiol (Lond) 254:C591–C604

    CAS  Google Scholar 

  • Guo T, Cornea RL, Huke S et al (2010) Kinetics of FKBP12.6 binding to ryanodine receptors in permeabilized cardiac myocytes and effects on Ca sparks. Circ Res 106:1743–1752. doi:10.1161/CIRCRESAHA.110.219816

  • Guo T, Gillespie D, Fill M (2012) Ryanodine receptor current amplitude controls Ca2+ sparks in cardiac muscle. Circ Res 111:28–36. doi:10.1161/CIRCRESAHA.112.265652

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gyorke S, Carnes C (2008) Dysregulated sarcoplasmic reticulum calcium release: potential pharmacological target in cardiac disease. Pharmacol Ther 119:340–354. doi:10.1016/j.pharmthera.2008.06.002

    Article  PubMed Central  PubMed  Google Scholar 

  • Gyorke S, Gyorke I, Lukyanenko V, Terentyev D, Viatchenko-Karpinski S, Wiesner TF (2002) Regulation of sarcoplasmic reticulum calcium release by luminal calcium in cardiac muscle. Front Biosci 7:d1454–d1463

    Article  CAS  PubMed  Google Scholar 

  • Gyorke I, Hester N, Jones LR, Gyorke S (2004) The role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium. Biophys J 86:2121–2128

    Article  PubMed Central  PubMed  Google Scholar 

  • Haigney MC, Wei S, Kaab S et al (1998) Loss of cardiac magnesium in experimental heart failure prolongs and destabilizes repolarization in dogs. J Am Coll Cardiol 31:701–706

  • Hasenfuss G, Pieske B (2002) Calcium cycling in congestive heart failure. J Mol Cell Cardiol 34:951–969

    Article  CAS  PubMed  Google Scholar 

  • Holmberg SR, Williams AJ (1992) The calcium-release channel from cardiac sarcoplasmic reticulum: function in the failing and acutely ischaemic hear. Basic Res Cardiol 87[Suppl 1]:255–268

    PubMed  Google Scholar 

  • Hymel L, Inui M, Fleischer S, Schindler H (1988) Purified ryanodine receptor of skeletal muscle sarcoplasmic reticulum forms Ca2+-activated oligomeric Ca2+ channels in planar bilayers. Proc Natl Acad Sci USA 85:441–445

  • Ide T, Tsutsui H, Kinugawa S et al (1999) Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ Res 85:357–363

  • Iseri LT, Alexander LC, Mc CR, Boyle AJ, Myers GB (1952) Water and electrolyte content of cardiac and skeletal muscle in heart failure and myocardial infarction. Am Heart J 43:215–227

    Article  CAS  PubMed  Google Scholar 

  • Jiang MT, Lokuta AJ, Farrell EF, Wolff MR, Haworth RA, Valdivia HH (2002) Abnormal Ca2+ release, but normal ryanodine receptors, in canine and human heart failure. Circ Res 91:1015–1022

    Article  CAS  PubMed  Google Scholar 

  • Ju YK, Allen DG (1998) Intracellular calcium and Na+-Ca2+ exchange current in isolated toad pacemaker cells. J Physiol 508(Pt 1):153–166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ju YK, Allen DG (2007) Store-operated Ca2+ entry and TRPC expression; possible roles in cardiac pacemaker tissue. Heart Lung Circ 16:349–355

    Article  CAS  PubMed  Google Scholar 

  • Kermode H, Williams AJ, Sitsapesan R (1998) The interactions of ATP, ADP, and inorganic phosphate with the sheep cardiac ryanodine receptor. Biophys J 74:1296–1304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kinugawa T, Ogino K, Kitamura H et al (1996) Catecholamines, renin-angiotensin-aldosterone system, and atrial natriuretic peptide at rest and during submaximal exercise in patients with congestive heart failure. Am J Med Sci 312:110–117

  • Kubalova Z, Terentyev D, Viatchenko-Karpinski S et al (2005) Abnormal intrastore calcium signaling in chronic heart failure. Proc Natl Acad Sci U S A 102:14104–14109

  • Kushnir A, Betzenhauser MJ, Marks AR (2010) Ryanodine receptor studies using genetically engineered mice. FEBS Lett 584:1956–1965. doi:10.1016/j.febslet.2010.03.005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laver DR (2007) Ca2+ stores regulate ryanodine receptor Ca2+ release channels via luminal and cytosolic Ca2+ sites. Biophys J 92:3541–3555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laver DR (2009) Luminal Ca2+ activation of cardiac ryanodine receptors by luminal and cytoplasmic domains. Eur Biophys J 39:19–26

    Article  CAS  PubMed  Google Scholar 

  • Laver DR (2010) Regulation of the RyR channel gating by different modulators. In: Serysheva I (ed) Structure and function of calcium release channels (Current topics in membranes, vol 66). Elsevier, Amsterdam, pp 69–89

  • Laver DR, Honen BN (2008) Luminal Mg2+, a key factor controlling RYR2-mediated Ca2+ release: cytoplasmic and luminal regulation modeled in a tetrameric channel. J Gen Physiol 132:429–446

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laver DR, Roden LD, Ahern GP, Eager KR, Junankar PR, Dulhunty AF (1995) Cytoplasmic Ca2+ inhibits the ryanodine receptor from cardiac muscle. J Membrane Biol 147:7–22

    Article  CAS  Google Scholar 

  • Laver DR, Baynes TM, Dulhunty AF (1997) Magnesium inhibition of ryanodine-receptor calcium channels: evidence for two independent mechanisms. J Membrane Biol 156:213–229

    Article  CAS  Google Scholar 

  • Laver DR, Kong CHT, Imtiaz MS, Cannell MB (2013) Termination of calcium-induced calcium release by induction decay: an emergent property of stochastic channel gating and molecular scale architecture. J Mol Cell Cardiol 54:98–100

    Article  CAS  PubMed  Google Scholar 

  • Lee YS, Liu OZ, Hwang HS, Knollmann BC, Sobie EA (2013) Parameter sensitivity analysis of stochastic models provides insights into cardiac calcium sparks. Biophys J 104:1142–1150. doi:10.1016/j.bpj.2012.12.055

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lehnart SE, Wehrens XH, Marks AR (2005) Defective ryanodine receptor interdomain interactions may contribute to intracellular Ca2+ leak: a novel therapeutic target in heart failure. Circulation 111:3342–3346

    Article  PubMed  Google Scholar 

  • Li J, Imtiaz MS, Beard NA, Dulhunty AF, Thorne R, van Helden DF, Laver DR (2013) ss-Adrenergic stimulation increases RyR2 activity via intracellular Ca2+ and Mg2+ regulation. PLoS One 8:e58334. doi:10.1371/journal.pone.0058334

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li Y, Kranias EG, Mignery GA, Bers DM (2002) Protein kinase a phosphorylation of the ryanodine receptor does not affect calcium sparks in mouse ventricular myocytes. Circ Res 90:309–316

    Article  CAS  PubMed  Google Scholar 

  • Lou Q, Fedorov VV, Glukhov AV, Moazami N, Fast VG, Efimov IR (2011) Transmural heterogeneity and remodeling of ventricular excitation-contraction coupling in human heart failure. Circulation 123:1881–1890. doi:10.1161/CIRCULATIONAHA.110.989707

    Article  PubMed Central  PubMed  Google Scholar 

  • Maier LS, Zhang T, Chen L, DeSantiago J, Brown JH, Bers DM (2003) Transgenic CaMKIIdeltaC overexpression uniquely alters cardiac myocyte Ca2+ handling: reduced SR Ca2+ load and activated SR Ca2+ release. Circ Res 92:904–911. doi:10.1161/01.RES.0000069685.20258.F1

    Article  CAS  PubMed  Google Scholar 

  • Marks AR (2001) Ryanodine receptors/calcium release channels in heart failure and sudden cardiac death. J Mol Cell Cardiol 33:615–624

    Article  CAS  PubMed  Google Scholar 

  • Marks AR (2003) A guide for the perplexed: towards an understanding of the molecular basis of heart failure. Circulation 107:1456–1459

    Article  PubMed  Google Scholar 

  • Marks AR, Reiken S, Marx SO (2002) Progression of heart failure: is protein kinase a hyperphosphorylation of the ryanodine receptor a contributing factor? Circulation 105:272–275

    CAS  PubMed  Google Scholar 

  • Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N, Marks AR (2000) PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101:365–376

    Article  CAS  PubMed  Google Scholar 

  • McGrath KF, Yuki A, Manaka Y, Tamaki H, Saito K, Takekura H (2009) Morphological characteristics of cardiac calcium release units in animals with metabolic and circulatory disorders. J Muscle Res Cell Motil 30:225–231. doi:10.1007/s10974-009-9191-z

    Article  PubMed  Google Scholar 

  • Meissner G (1986) Ryanodine activation and inhibition of the Ca2+ release channel of sarcoplasmic reticulum. J Biol Chem 261:6300–6306

    CAS  PubMed  Google Scholar 

  • Meissner G (1994) Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors. Annu Rev Physiol 56:485–508. doi:10.1146/annurev.ph.56.030194.002413

    Article  CAS  PubMed  Google Scholar 

  • Meissner G, Henderson JS (1987) Rapid calcium release from cardiac sarcoplasmic reticulum vesicles is dependent on Ca2+ and is modulated by Mg2+, adenine nucleotide, and calmodulin. J Biol Chem 262:3065–3073

    CAS  PubMed  Google Scholar 

  • Meissner G, Darling E, Eveleth J (1986) Kinetics of rapid Ca2+ release by sarcoplasmic reticulum. Effects of Ca2+, Mg2+, and adenine nucleotides. Biochemistry 25:236–244

    Article  CAS  PubMed  Google Scholar 

  • Mohler PJ, Wehrens XH (2007) Mechanisms of human arrhythmia syndromes: abnormal cardiac macromolecular interactions. Physiology (Bethesda) 22:342–350. doi:10.1152/physiol.00018.2007

    Article  CAS  Google Scholar 

  • Mozaffarian D, Anker SD, Anand I et al (2007) Prediction of mode of death in heart failure: the Seattle heart failure model. Circulation 116:392–398. doi:10.1161/CIRCULATIONAHA.106.687103

  • Murphy RM, Dutka TL, Horvath D, Bell JR, Delbridge LM, Lamb GD (2013) Ca2+-dependent proteolysis of junctophilin-1 and junctophilin-2 in skeletal and cardiac muscle. J Physiol 591:719–729. doi:10.1113/jphysiol.2012.243279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nishi M, Sakagami H, Komazaki S, Kondo H, Takeshima H (2003) Coexpression of junctophilin type 3 and type 4 in brain. Brain Res Mol Brain Res 118:102–110

    Article  CAS  PubMed  Google Scholar 

  • Pathak A, del Monte F, Zhao W et al (2005) Enhancement of cardiac function and suppression of heart failure progression by inhibition of protein phosphatase 1. Circ Res 96:756–766. doi:10.1161/01.RES.0000161256.85833.fa

  • Pedrozo Z, Sanchez G, Torrealba N et al (2010) Calpains and proteasomes mediate degradation of ryanodine receptors in a model of cardiac ischemic reperfusion. Biochim Biophys Acta 1802:356–362. doi:10.1016/j.bbadis.2009.12.005

  • Piacentino V 3rd, Weber CR, Chen X, Weisser-Thomas J, Margulies KB, Bers DM, Houser SR (2003) Cellular basis of abnormal calcium transients of failing human ventricular myocytes. Circ Res 92:651–658. doi:10.1161/01.RES.0000062469.83985.9B

    Article  CAS  PubMed  Google Scholar 

  • Prestle J, Dieterich S, Preuss M, Bieligk U, Hasenfuss G (1999) Heterogeneous transmural gene expression of calcium-handling proteins and natriuretic peptides in the failing human heart. Cardiovasc Res 43:323–331

    Article  CAS  PubMed  Google Scholar 

  • Radermacher M, Rao V, Grassucci R, Frank J, Timerman AP, Fleischer S, Wagenknecht T (1994) Cryo-electron microscopy and three-dimensional reconstruction of the calcium release channel/ryanodine receptor from skeletal muscle. J Cell Biol 127:411–423

    Article  CAS  PubMed  Google Scholar 

  • Ralston MA, Murnane MR, Kelley RE, Altschuld RA, Unverferth DV, Leier CV (1989) Magnesium content of serum, circulating mononuclear cells, skeletal muscle, and myocardium in congestive heart failure. Circulation 80:573–580

    Article  CAS  PubMed  Google Scholar 

  • Rardon DP, Cefali DC, Mitchell RD, Seiler SM, Hathaway DR, Jones LR (1990) Digestion of cardiac and skeletal muscle junctional sarcoplasmic reticulum vesicles with calpain II. Effects on the Ca2+ release channel. Circ Res 67:84–96

    Article  CAS  PubMed  Google Scholar 

  • Rigg L, Terrar DA (1996) Possible role of calcium release from the sarcoplasmic reticulum in pacemaking in guinea-pig sino-atrial node. Exp Physiol 81:877–880

    Article  CAS  PubMed  Google Scholar 

  • Schmidt U, Hajjar RJ, Kim CS, Lebeche D, Doye AA, Gwathmey JK (1999) Human heart failure: cAMP stimulation of SR Ca2+-ATPase activity and phosphorylation level of phospholamban. Am J Physiol 277:H474–H480

    CAS  PubMed  Google Scholar 

  • Schwinger RH, Bohm M, Schmidt U et al (1995) Unchanged protein levels of SERCA II and phospholamban but reduced Ca2+ uptake and Ca2+-ATPase activity of cardiac sarcoplasmic reticulum from dilated cardiomyopathy patients compared with patients with nonfailing hearts. Circulation 92:3220–3228

  • Schwinger RH, Munch G, Bolck B, Karczewski P, Krause EG, Erdmann E (1999) Reduced Ca2+-sensitivity of SERCA 2a in failing human myocardium due to reduced serin-16 phospholamban phosphorylation. J Mol Cell Cardiol 31:479–491

    Article  PubMed  Google Scholar 

  • Shan J, Betzenhauser MJ, Kushnir A et al (2010) Role of chronic ryanodine receptor phosphorylation in heart failure and beta-adrenergic receptor blockade in mice. J Clin Invest 120:4375–4387. doi:10.1172/JCI37649

  • Shannon TR, Pogwizd SM, Bers DM (2003) Elevated sarcoplasmic reticulum Ca2+ leak in intact ventricular myocytes from rabbits in heart failure. Circ Res 93:592–594

    Article  CAS  PubMed  Google Scholar 

  • Sitsapesan R, Williams AJ (1994a) Gating of the native and purified cardiac SR Ca2+-release channels with monovalent cations as permeant species. Biophys J 67:1484–1494

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sitsapesan R, Williams AJ (1994b) Regulation of the gating of the sheep cardiac sarcoplasmic reticulum Ca2+-release channel by luminal Ca2+. J Membr Biol 137:215–226

    Article  CAS  PubMed  Google Scholar 

  • Sitsapesan R, Williams AJ (1997) Regulation of current flow through ryanodine receptors by luminal Ca2+. J Membr Biol 159:179–185

    Article  CAS  PubMed  Google Scholar 

  • Smith JS, Coronado R, Meissner G (1986) Single channel measurements of the calcium release channel from skeletal muscle sarcoplasmic reticulum. Activation by Ca2+ and ATP and modulation by Mg2+. J Gen Physiol 88:573–588

    Article  CAS  PubMed  Google Scholar 

  • Sobie EA, Song LS, Lederer WJ (2005) Local recovery of Ca2+ release in rat ventricular myocytes. J Physiol 565:441–447. doi:10.1113/jphysiol.2005.086496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Soeller C, Cannell MB (1997) Numerical simulation of local calcium movements during L-type calcium channel gating in the cardiac diad. Biophys J 73:97–111. doi:10.1016/S0006-3495(97)78051-2

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song LS, Pi Y, Kim SJ et al (2005) Paradoxical cellular Ca2+ signaling in severe but compensated canine left ventricular hypertrophy. Circ Res 97:457–464. doi:10.1161/01.RES.0000179722.79295.d4

  • Song LS, Sobie EA, McCulle S, Lederer WJ, Balke CW, Cheng H (2006) Orphaned ryanodine receptors in the failing heart. Proc Natl Acad Sci USA 103:4305–4310. doi:10.1073/pnas.0509324103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Studer R, Reinecke H, Bilger J et al (1994) Gene expression of the cardiac Na+-Ca2+ exchanger in end-stage human heart failure. Circ Res 75:443–453

  • Sun J, Xin C, Eu JP, Stamler JS, Meissner G (2001) Cysteine-3635 is responsible for skeletal muscle ryanodine receptor modulation by NO. Proc Natl Acad Sci USA 98:11158–11162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takeshima H, Komazaki S, Nishi M, Iino M, Kangawa K (2000) Junctophilins: a novel family of junctional membrane complex proteins. Mol Cell 6:11–22

    CAS  PubMed  Google Scholar 

  • Tijskens P, Jones LR, Franzini-Armstrong C (2003) Junctin and calsequestrin overexpression in cardiac muscle: the role of junctin and the synthetic and delivery pathways for the two proteins. J Mol Cell Cardiol 35:961–974

    Article  CAS  PubMed  Google Scholar 

  • Tripathy A, Meissner G (1996) Sarcoplasmic reticulum lumenal Ca2+ has access to cytosolic activation and inactivation sites of skeletal muscle Ca2+ release channel. Biophys J 70:2600–2615

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van Helden DF (1993) Pacemaker potentials in lymphatic smooth muscle of the guinea-pig mesentery. J Physiol 471:465–479

    Article  PubMed Central  PubMed  Google Scholar 

  • van Helden DF, Imtiaz MS (2003) Ca2+ phase waves: a basis for cellular pacemaking and long-range synchronicity in the guinea-pig gastric pylorus. J Physiol (Lond) 548:271–296

  • Vinogradova TM, Maltsev VA, Bogdanov KY, Lyashkov AE, Lakatta EG (2005) Rhythmic Ca2+ oscillations drive sinoatrial nodal cell pacemaker function to make the heart tick. Ann N Y Acad Sci 1047:138–156

    Article  CAS  PubMed  Google Scholar 

  • Walweel K, Li J, Molenaar P et al (2014) Differences in the regulation of RyR2 from human, sheep, and rat by Ca2+ and Mg2+ in the cytoplasm and in the lumen of the sarcoplasmic reticulum. J Gen Physiol 144:263–271. doi:10.1085/jgp.201311157

  • Wehrens XH, Lehnart SE, Huang F et al (2003) FKBP12.6 deficiency and defective calcium release channel (ryanodine receptor) function linked to exercise-induced sudden cardiac death. Cell 113:829–840

  • Wehrens XH, Lehnart SE, Reiken SR et al (2004) Protection from cardiac arrhythmia through ryanodine receptor-stabilizing protein calstabin2. Science 304:292–296

  • Wehrens XH, Lehnart SE, Marks AR (2005) Ryanodine receptor-targeted anti-arrhythmic therapy. Ann N Y Acad Sci 1047:366–375

    Article  CAS  PubMed  Google Scholar 

  • Wehrens XH, Lehnart SE, Reiken S, Vest JA, Wronska A, Marks AR (2006) Ryanodine receptor/calcium release channel PKA phosphorylation: a critical mediator of heart failure progression. Proc Natl Acad Sci USA 103:511–518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu L, Mann G, Meissner G (1996) Regulation of cardiac Ca2+ release channel (ryanodine receptor) by Ca2+, H+, Mg2+, and adenine nucleotides under normal and simulated ischemic conditions. Circ Res 79:1100–1109

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Eu JP, Meissner G, Stamler JS (1998) Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science 279:234–237

    Article  CAS  PubMed  Google Scholar 

  • Yano M, Okuda S, Oda T et al (2005) Correction of defective interdomain interaction within ryanodine receptor by antioxidant is a new therapeutic strategy against heart failure. Circulation 112:3633–3643

  • Zhang L, Kelley J, Schmeisser G, Kobayashi YM, Jones LR (1997) Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. Proteins of the cardiac junctional sarcoplasmic reticulum membrane. J Biol Chem 272:23389–23397

    Article  CAS  PubMed  Google Scholar 

  • Zima AV, Picht E, Bers DM, Blatter LA (2008) Termination of cardiac Ca2+ sparks: role of intra-SR [Ca2+], release flux, and intra-SR Ca2+ diffusion. Circ Res 103:e105–e115. doi:10.1161/CIRCRESAHA.107.183236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zima AV, Bovo E, Bers DM, Blatter LA (2010) Ca2+ spark-dependent and -independent sarcoplasmic reticulum Ca2+ leak in normal and failing rabbit ventricular myocytes. J Physiol 588:4743–4757. doi:10.1113/jphysiol.2010.197913

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zissimopoulos S, Docrat N, Lai FA (2007) Redox sensitivity of the ryanodine receptor interaction with FK506-binding protein. J Biol Chem 282:6976–6983

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a scholarship from the University of Newcastle and the Hunter Medical Research Institute and a project grant from the NH&MRC (631052).

Compliance with Ethical Standards

Conflict of interest

Kafa Walweel declares that she has no conflict of interest Derek R. Laver declares that he has no conflict of intrest.

Ethical approval

This article does not contain any studies with human or animal subjects performed by the any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. R. Laver.

Additional information

Special Issue: Biophysics of Human Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walweel, K., Laver, D.R. Mechanisms of SR calcium release in healthy and failing human hearts. Biophys Rev 7, 33–41 (2015). https://doi.org/10.1007/s12551-014-0152-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-014-0152-4

Keywords

Navigation