Skip to main content
Log in

Single-molecule in vitro reconstitution assay for kinesin-1-driven membrane dynamics

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Intracellular membrane dynamics, especially the nano-tube formation, plays important roles in vesicle transportation and organelle biogenesis. Regarding the regulation mechanisms, it is well known that during the nano-tube formation, motor proteins act as the driven force moving along the cytoskeleton, lipid composition and its associated proteins serve as the linkers and key mediators, and the vesicle sizes play as one of the important regulators. In this review, we summarized the in vitro reconstitution assay method, which has been applied to reconstitute the nano-tube dynamics during autophagic lysosomal regeneration (ALR) and the morphology dynamics during mitochondria network formation (MNF) in a mimic and pure in vitro system. Combined with the single-molecule microscopy, the advantage of the in vitro reconstitution system is to study the key questions at a single-molecule or single-vesicle level with precisely tuned parameters and conditions, such as the motor mutation, ion concentration, lipid component, ATP/GTP concentration, and even in vitro protein knockout, which cannot easily be achieved by in vivo or intracellular studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allan V, Vale R (1994) Movement of membrane tubules along microtubules in vitro: evidence for specialised sites of motor attachment. J Cell Sci 107 ( Pt 7:1885–1897

    CAS  PubMed  Google Scholar 

  • Chan DC (2012) Fusion and fission: interlinked processes critical for mitochondrial health. Annu Rev Genet 46:265–287

    Article  CAS  Google Scholar 

  • Chen C, Wang F, Wen S, Su QP, Wu MCL, Liu Y, Wang B, Li D, Shan X, Kianinia M et al (2018a) Multi-photon near-infrared emission saturation nanoscopy using upconversion nanoparticles. Nat Commun 9:3290

    Article  Google Scholar 

  • Chen H, Chan DC (2009) Mitochondrial dynamics--fusion, fission, movement, and mitophagy--in neurodegenerative diseases. Hum Mol Genet 18:R169–R176

    Article  CAS  Google Scholar 

  • Chen Y, Su QP, Sun Y, Yu L (2018b) Visualizing autophagic lysosome reformation in cells using in vitro reconstitution systems. Curr Protoc Cell Biol 78:11.24.11–11.24.15

    Article  Google Scholar 

  • Chen Y, Su QP, Yu L (2019) Studying autophagic lysosome reformation in cells and by an in vitro reconstitution system. Methods Mol Biol 1880:163–172

    Article  Google Scholar 

  • Choudhuri K, Llodra J, Roth EW, Tsai J, Gordo S, Wucherpfennig KW, Kam LC, Stokes DL, Dustin ML (2014) Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse. Nature 507:118–123

    Article  CAS  Google Scholar 

  • Dabora SL, Sheetz MP (1988) The microtubule-dependent formation of a tubulovesicular network with characteristics of the ER from cultured cell extracts. Cell 54:27–35

    Article  CAS  Google Scholar 

  • Du W, Su QP, Chen Y, Zhu Y, Jiang D, Rong Y, Zhang S, Zhang Y, Ren H, Zhang C et al (2016) Kinesin 1 drives autolysosome tubulation. Dev Cell 37:326–336

    Article  CAS  Google Scholar 

  • Guan R, Zhang L, Su QP, Mickolajczyk KJ, Chen GY, Hancock WO, Sun Y, Zhao Y, Chen Z (2017) Crystal structure of Zen4 in the apo state reveals a missing conformation of kinesin. Nat Commun 8:14951

    Article  CAS  Google Scholar 

  • Hirokawa N, Takemura R (2005) Molecular motors and mechanisms of directional transport in neurons. Nat Rev Neurosci 6:201–214

    Article  CAS  Google Scholar 

  • Horbay R, Bilyy R (2016) Mitochondrial dynamics during cell cycling. Apoptosis 21:1327–1335

    Article  CAS  Google Scholar 

  • Kanfer G, Kornmann B (2016) Dynamics of the mitochondrial network during mitosis. Biochem Soc Trans 44:510–516

    Article  CAS  Google Scholar 

  • Kee AJ, Bryce NS, Yang L, Polishchuk E, Schevzov G, Weigert R, Polishchuk R, Gunning PW, Hardeman EC (2017) ER/Golgi trafficking is facilitated by unbranched actin filaments containing Tpm4.2. Cytoskeleton (Hoboken, NJ) 74:379–389

    Article  CAS  Google Scholar 

  • Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, Adachi H, Adams CM, Adams PD, Adeli K et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12:1–222

    Article  Google Scholar 

  • Klopfenstein DR, Tomishige M, Stuurman N, Vale RD (2002) Role of phosphatidylinositol(4,5)bisphosphate organization in membrane transport by the Unc104 kinesin motor. Cell 109:347–358

    Article  CAS  Google Scholar 

  • Liu Z, Xing D, Su QP, Zhu Y, Zhang J, Kong X, Xue B, Wang S, Sun H, Tao Y et al (2014) Super-resolution imaging and tracking of protein-protein interactions in sub-diffraction cellular space. Nat Commun 5:4443

    Article  CAS  Google Scholar 

  • Lucanus AJ, Yip GW (2018) Kinesin superfamily: roles in breast cancer, patient prognosis and therapeutics. Oncogene 37:833–838

    Article  CAS  Google Scholar 

  • McArthur K, Whitehead LW, Heddleston JM, Li L, Padman BS, Oorschot V, Geoghegan ND et al (2018) BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science 359(6378):eaao6047

    Article  Google Scholar 

  • Mi N, Chen Y, Wang S, Chen M, Zhao M, Yang G, Ma M, Su Q, Luo S, Shi J et al (2015) CapZ regulates autophagosomal membrane shaping by promoting actin assembly inside the isolation membrane. Nat Cell Biol 17:1112–1123

    Article  CAS  Google Scholar 

  • Pilling AD, Horiuchi D, Lively CM, Saxton WM (2006) Kinesin-1 and dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Mol Biol Cell 17:2057–2068

    Article  CAS  Google Scholar 

  • Rong Y, Liu M, Ma L, Du W, Zhang H, Tian Y, Cao Z, Li Y, Ren H, Zhang C et al (2012) Clathrin and phosphatidylinositol-4,5-bisphosphate regulate autophagic lysosome reformation. Nat Cell Biol 14:924–934

    Article  CAS  Google Scholar 

  • Roux A, Cappello G, Cartaud J, Prost J, Goud B, Bassereau P (2002) A minimal system allowing tubulation with molecular motors pulling on giant liposomes. Proc Natl Acad Sci U S A 99:5394–5399

    Article  CAS  Google Scholar 

  • Ruan H, Yu J, Yuan J, Li N, Fang X (2016) Nanoscale distribution of transforming growth factor receptor on post-Golgi vesicle revealed by super-resolution microscopy. Chem Asian J 11:3359–3364

    Article  CAS  Google Scholar 

  • Sahl SJ, Hell SW, Jakobs S (2017) Fluorescence nanoscopy in cell biology. Nat Rev Mol Cell Biol 18:685

    Article  CAS  Google Scholar 

  • Shen M, Zhang N, Zheng S, Zhang WB, Zhang HM, Lu Z, Su QP, Sun Y, Ye K, Li XD (2016) Calmodulin in complex with the first IQ motif of myosin-5a functions as an intact calcium sensor. Proc Natl Acad Sci U S A 113:E5812–e5820

    Article  CAS  Google Scholar 

  • Su QP, Du W, Ji Q, Xue B, Jiang D, Zhu Y, Lou J, Yu L, Sun Y (2016) Vesicle size regulates nanotube formation in the cell. Sci Rep 6:24002

    Article  CAS  Google Scholar 

  • Su QP, Ju LA (2018) Biophysical nanotools for single-molecule dynamics. Biophys Rev 10(5):1349–1357

    Article  CAS  Google Scholar 

  • Sun Y, Schroeder HW 3rd, Beausang JF, Homma K, Ikebe M, Goldman YE (2007) Myosin VI walks “wiggly” on actin with large and variable tilting. Mol Cell 28:954–964

    Article  CAS  Google Scholar 

  • Tanaka Y, Kanai Y, Okada Y, Nonaka S, Takeda S, Harada A, Hirokawa N (1998) Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 93:1147–1158

    Article  CAS  Google Scholar 

  • Vale RD (2003) The molecular motor toolbox for intracellular transport. Cell 112:467–480

    Article  CAS  Google Scholar 

  • Vale RD, Hotani H (1988) Formation of membrane networks in vitro by kinesin-driven microtubule movement. J Cell Biol 107:2233–2241

    Article  CAS  Google Scholar 

  • Vale RD, Reese TS, Sheetz MP (1985) Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42:39–50

    Article  CAS  Google Scholar 

  • Valm AM, Cohen S, Legant WR, Melunis J, Hershberg U, Wait E, Cohen AR, Davidson MW, Betzig E, Lippincott-Schwartz J (2017) Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature 546:162–167

    Article  CAS  Google Scholar 

  • Vincent AE, Turnbull DM, Eisner V, Hajnoczky G, Picard M (2017) Mitochondrial nanotunnels. Trends Cell Biol 27:787–799

    Article  CAS  Google Scholar 

  • Wang C, Du W, Su QP, Zhu M, Feng P, Li Y, Zhou Y, Mi N, Zhu Y, Jiang D et al (2015) Dynamic tubulation of mitochondria drives mitochondrial network formation. Cell Res 25:1108–1120

    Article  CAS  Google Scholar 

  • Waterman-Storer CM, Karki SB, Kuznetsov SA, Tabb JS, Weiss DG, Langford GM, Holzbaur EL (1997) The interaction between cytoplasmic dynein and dynactin is required for fast axonal transport. Proc Natl Acad Sci U S A 94:12180–12185

    Article  CAS  Google Scholar 

  • Yildiz A, Forkey JN, McKinney SA, Ha T, Goldman YE, Selvin PR (2003) Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300:2061–2065

    Article  CAS  Google Scholar 

  • Yu L, McPhee CK, Zheng L, Mardones GA, Rong Y, Peng J, Mi N, Zhao Y, Liu Z, Wan F et al (2010) Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465:942–946

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Technology Sydney’s Grant for IBMD (Q.P.S.).

Author information

Authors and Affiliations

Authors

Contributions

W.D. and Q.P.S. contributed equally, prepared figures, and wrote and edited the manuscript together.

Corresponding author

Correspondence to Qian Peter Su.

Ethics declarations

Conflict of interest

Wanqing Du declares that he has no conflict of interest. Qian Peter Su declares that he has no conflict of interest.

Additional information

This article is part of a Special Issue dedicated to the “2018 Joint Conference of the Asian Biophysics Association and Australian Society for Biophysics” edited by Kuniaki Nagayama, Raymond Norton, Kyeong Kyu Kim, Hiroyuki Noji, Till Böcking, and Andrew Battle.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, W., Su, Q.P. Single-molecule in vitro reconstitution assay for kinesin-1-driven membrane dynamics. Biophys Rev 11, 319–325 (2019). https://doi.org/10.1007/s12551-019-00531-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-019-00531-4

Keywords

Navigation