Skip to main content
Log in

Asynchronous Brain–Computer Interface Based on Steady-State Visual-Evoked Potential

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Asynchronous brain–computer interface (BCI) systems are more practicable than synchronous ones in real-world applications. A key challenge in asynchronous BCI design is to discriminate intentional control (IC) and non-intentional control (NC) states. In this paper, we present a two-stage asynchronous protocol for a steady-state visual-evoked potential-based BCI. First, we estimate a threshold using canonical correlation analysis coefficients in synchronous mode; then, we combine it with a sliding window strategy to continuously detect the mental state of the user. If the current state is judged as an IC state, then the system will output command. Our results show that the average positive predictive value of the system is 77.06  % and that its average false-positive rate in the NC state and IC state are 2.37 and 12.05 %, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM. Brain-computer interfaces for communication and control. Clin Neurophysiol. 2002;113(6):767–91.

    Article  PubMed  Google Scholar 

  2. Pfurtscheller G, Neuper C, Muller GR, Obermaier B, Krausz G, Schlogl A, Scherer R, Graimann B, Keinrath C, Skliris D, et al. Graz-bci: state of the art and clinical applications. IEEE Trans Neural Syst Rehabil Eng. 2003;11(2):1–4.

    Article  Google Scholar 

  3. Farwell LA, Donchin E. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol. 1988;70(6):510–23.

    Article  PubMed  CAS  Google Scholar 

  4. Birbaumer N. Breaking the silence: brain–computer interfaces (bci) for communication and motor control. Psychophysiology 2006;43(6):517–32.

    Article  PubMed  Google Scholar 

  5. Ortner R, Allison B, Korisek G, Gaggl H, Pfurtscheller G. An SSVEP BCI to control a hand orthosis for persons with tetraplegia. IEEE Trans Neural Syst Rehabil Eng. 2011;19(1):1–5.

    Google Scholar 

  6. Middendorf M, McMillan G, Calhoun G, Jones KS. Brain-computer interfaces based on the steady-state visual-evoked response. IEEE Trans Rehabil Eng. 2000;8(2):211–4.

    Article  PubMed  CAS  Google Scholar 

  7. Lin Z, Zhang C, Wu W, Gao X. Frequency recognition based on canonical correlation analysis for ssvep-based bcis. IEEE Trans Biomed Eng. 2006;53(12):2610–4.

    Article  PubMed  Google Scholar 

  8. Muller-Putz GR, Pfurtscheller G. Control of an electrical prosthesis with an ssvep-based bci. IEEE Trans Biomed Eng. 2008;55(1):361–4.

    Article  PubMed  Google Scholar 

  9. Mason SG, Birch GE. A brain-controlled switch for asynchronous control applications. IEEE Trans Biomed Eng. 2000;47.10: 1297–307.

    Article  PubMed  CAS  Google Scholar 

  10. Provost, F. Machine learning from imbalanced data sets 101. In: Proceedings of the AAAI’ 2000 workshop on imbalanced data sets, 2000.

  11. He H, Garcia EA. Learning from imbalanced data. IEEE Trans Knowl Data Eng. 2009;21.9: 1263–84.

    Google Scholar 

  12. Ren R, Bin G, Gao X. Idle state detection in ssvep-based brain-computer interfaces. In: Bioinformatics and biomedical engineering, 2008. ICBBE 2008. The 2nd international conference on, p. 2012–5. IEEE, 2008.

  13. Wang N, Qian T, Zhuo Q, Gao X. Discrimination between idle and work states in bci based on ssvep. In: Advanced computer control (ICACC), 2010 2nd international conference on, volume 4, p. 355–8. IEEE, 2010.

  14. Zhang ZM, Deng ZD. A kernel canonical correlation analysis based idle-state detection method for SSVEP-based brain-computer interfaces. Adv Mater Res. 2012;341: 634–40.

    Article  Google Scholar 

  15. Cecotti H. A self-paced and calibration-less ssvep-based brain–computer interface speller. IEEE Trans Neural Syst Rehabil Eng. 2010;18(2):127–33.

    Article  PubMed  Google Scholar 

  16. Horki P, Neuper C, Pfurtscheller G, Müller-Putz G. Asynchronous steady-state visual evoked potential based bci control of a 2-dof artificial upper limb. Biomedizinische Technik/Biomed Eng. 2010;55(6):367–74.

    Article  Google Scholar 

  17. Faller J, Mller-Putz G, Schmalstieg D, Pfurtscheller G. An application framework for controlling an avatar in a desktop-based virtual environment via a software ssvep brain-computer interface. Presence Teleoperators Virtual Environ. 2010;19(1): 25–34.

    Google Scholar 

  18. Hjorth B. An on-line transformation of eeg scalp potentials into orthogonal source derivations. Electroencephalogr Clin Neurophysiol. 1975;39(5):526–30.

    Article  PubMed  CAS  Google Scholar 

  19. Friman O, Volosyak I, Graser A. Multiple channel detection of steady-state visual evoked potentials for brain-computer interfaces. IEEE Trans Biomed Eng. 2007;54(4):742–50.

    Article  PubMed  Google Scholar 

  20. Townsend G, Graimann B, Pfurtscheller G. Continuous eeg classification during motor imagery-simulation of an asynchronous bci. IEEE Trans Neural Syst Rehabil Eng 2004;12(2):258–65.

    Article  PubMed  Google Scholar 

  21. Parini S, Maggi L, Turconi AC, Andreoni G. A robust and self-paced BCI system based on a four class SSVEP paradigm: algorithms and protocols for a high-transfer-rate direct brain communication. Comput Intell Neurosci. 2009.

Download references

Acknowledgments

The work was supported by Innovation Program of Shanghai Municipal Education Commission (Grand No. 11YZ141,12ZZ150) and the National Natural Science Foundation of China (Grant No. 60905065,61105122), the Ministry of Transport of the Peoples Republic of China (Grant No. 2012319810190),the Shanghai Phosphor Science Foundation ,china (Grand No.11QA1402900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Xia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, B., Li, X., Xie, H. et al. Asynchronous Brain–Computer Interface Based on Steady-State Visual-Evoked Potential. Cogn Comput 5, 243–251 (2013). https://doi.org/10.1007/s12559-013-9202-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-013-9202-7

Keywords

Navigation