Skip to main content
Log in

Flexible Conditional Borrowing Approaches for Leveraging Historical Data in the Bayesian Design of Superiority Trials

  • Published:
Statistics in Biosciences Aims and scope Submit manuscript

Abstract

In this paper, we consider the Bayesian design of a randomized, double-blind, placebo-controlled superiority clinical trial. To leverage multiple historical datasets to augment the placebo-controlled arm, we develop three conditional borrowing approaches built upon the borrowing-by-parts prior, the hierarchical prior, and the robust mixture prior. The operating characteristics of the conditional borrowing approaches are examined. Extensive simulation studies are carried out to empirically demonstrate the superiority of the conditional borrowing approaches over the unconditional borrowing or no-borrowing approaches in terms of controlling type I error, maintaining good power, having a large “sweet-spot” region, minimizing bias, and reducing the mean-squared error of the posterior estimate of the mean parameter of the placebo-controlled arm. Computational algorithms are also developed for calculating the Bayesian type I error and power as well as the corresponding simulation errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mah JK, Korngut L, Dykeman J, Day L, Pringsheim T, Jette N (2014) A systematic review and meta-analysis on the epidemiology of Duchenne and Becker muscular dystrophy. Neuromuscul Disord 24(6):482–491

    Article  Google Scholar 

  2. Hoffman EP, Brown RH Jr, Kunkel LM (1987) Dystrophin: the protein product of the duchenne muscular dystrophy locus. Cell 51(6):919–928

    Article  Google Scholar 

  3. Evans NP, Misyak SA, Robertson JL, Bassaganya-Riera J, Grange RW (2009) Dysregulated intracellular signaling and inflammatory gene expression during initial disease onset in Duchenne muscular dystrophy. Am J Phys Med Rehabil 88(6):502–522

    Article  Google Scholar 

  4. Ibrahim JG, Chen MH (2000) Power prior distributions for regression models. Stat Sci 15(1):46–60

    MathSciNet  Google Scholar 

  5. Ibrahim JG, Chen MH, Gwon Y, Chen F (2015) The power prior: theory and applications. Stat Med 34(28):3724–3749

    Article  MathSciNet  Google Scholar 

  6. Berry SM, Broglio KR, Groshen S, Berry DA (2013) Bayesian hierarchical modeling of patient subpopulations: efficient designs of phase ii oncology clinical trials. Clin Trials 10(5):720–734

    Article  Google Scholar 

  7. Chen MH, Ibrahim JG, Lam P, Yu A, Zhang Y (2011) Bayesian design of noninferiority trials for medical devices using historical data. Biometrics 67(3):1163–1170

    Article  MathSciNet  Google Scholar 

  8. Thall PF, Wathen JK, Bekele BN, Champlin RE, Baker LH, Benjamin RS (2003) Hierarchical Bayesian approaches to phase ii trials in diseases with multiple subtypes. Stat Med 22(5):763–780

    Article  Google Scholar 

  9. Hobbs BP, Carlin BP, Mandrekar SJ, Sargent DJ (2011) Hierarchical commensurate and power prior models for adaptive incorporation of historical information in clinical trials. Biometrics 67(3):1047–1056

    Article  MathSciNet  Google Scholar 

  10. Hobbs BP, Sargent DJ, Carlin BP (2012) Commensurate priors for incorporating historical information in clinical trials using general and generalized linear models. Bayesian Anal 7(3):639

    Article  MathSciNet  Google Scholar 

  11. Neuenschwander B, Capkun-Niggli G, Branson M, Spiegelhalter DJ (2010) Summarizing historical information on controls in clinical trials. Clin Trials 7(1):5–18

    Article  Google Scholar 

  12. Schmidli H, Gsteiger S, Roychoudhury S, O’Hagan A, Spiegelhalter D, Neuenschwander B (2014) Robust meta-analytic-predictive priors in clinical trials with historical control information. Biometrics 70(4):1023–1032

    Article  MathSciNet  Google Scholar 

  13. Han B, Zhan J, John Zhong Z, Liu D, Lindborg S (2017) Covariate-adjusted borrowing of historical control data in randomized clinical trials. Pharm Stat 16(4):296–308

    Article  Google Scholar 

  14. Chen MH, Ibrahim JG, Zeng D, Hu K, Jia C (2014) Bayesian design of superiority clinical trials for recurrent events data with applications to bleeding and transfusion events in myelodyplastic syndrome. Biometrics 70(4):1003–1013

    Article  MathSciNet  Google Scholar 

  15. Ibrahim JG, Chen MH, Xia HA, Liu T (2012) Bayesian meta-experimental design: evaluating cardiovascular risk in new antidiabetic therapies to treat type 2 diabetes. Biometrics 68(2):578–586

    Article  MathSciNet  Google Scholar 

  16. Lim J, Walley R, Yuan J, Liu J, Dabral A, Best N, Grieve A, Hampson L, Wolfram J, Woodward P et al (2018) Minimizing patient burden through the use of historical subject-level data in innovative confirmatory clinical trials: review of methods and opportunities. Ther Innov Regul Sci 52(5):546–559

    Article  Google Scholar 

  17. Pan H, Yuan Y, Xia J (2017) A calibrated power prior approach to borrow information from historical data with application to biosimilar clinical trials. J R Stat Soc Ser C Appl Stat 66(5):979–996

    Article  MathSciNet  Google Scholar 

  18. Viele K, Berry S, Neuenschwander B, Amzal B, Chen F, Enas N, Hobbs B, Ibrahim JG, Kinnersley N, Lindborg S et al (2014) Use of historical control data for assessing treatment effects in clinical trials. Pharm Stat 13(1):41–54

    Article  Google Scholar 

  19. Allocco DJ, Cannon LA, Britt A, Heil JE, Nersesov A, Wehrenberg S, Dawkins KD, Kereiakes DJ (2010) A prospective evaluation of the safety and efficacy of the taxus element paclitaxel-eluting coronary stent system for the treatment of de novo coronary artery lesions: design and statistical methods of the perseus clinical program. Trials 11(1):1

    Article  Google Scholar 

  20. Yuan W, Chen MH, Zhong J (2020) Bayesian design of superiority trials: methods and applications. Tech Report 20-37, Department of Statistics, University of Connecticut

  21. Wang C, Li H, Chen WC, Lu N, Tiwari R, Xu Y, Yue LQ (2019) Propensity score-integrated power prior approach for incorporating real-world evidence in single-arm clinical studies. J Biopharm Stat 29(5):731–748

    Article  Google Scholar 

  22. Jiang L, Nie L, Yuan Y (2020) Elastic priors to dynamically borrow information from historical data in clinical trials. arXiv preprint arXiv:200906083

  23. van Rosmalen J, Dejardin D, van Norden Y, Löwenberg B, Lesaffre E (2018) Including historical data in the analysis of clinical trials: is it worth the effort? Stat Methods Med Res 27(10):3167–3182

    Article  MathSciNet  Google Scholar 

  24. Schmidli H, Häring DA, Thomas M, Cassidy A, Weber S, Bretz F (2020) Beyond randomized clinical trials: use of external controls. Clin Pharmacol Ther 107(4):806–816

    Article  Google Scholar 

  25. Hall KT, Vase L, Tobias DK, Dashti HT, Vollert J, Kaptchuk TJ, Cook NR (2020) Historical controls in randomized clinical trials: opportunities and challenges. Clin Pharmacol Ther 109:343–351

    Article  Google Scholar 

  26. Ghadessi M, Tang R, Zhou J, Liu R, Wang C, Toyoizumi K, Mei C, Zhang L, Deng C, Beckman RA (2020) A roadmap to using historical controls in clinical trials-by drug information association adaptive design scientific working group (dia-adswg). Orphanet J Rare Dis 15(1):1–19

    Article  Google Scholar 

  27. Greenhouse JB, Waserman L (1995) Robust Bayesian methods for monitoring clinical trials. Stat Med 14(12):1379–1391

    Article  Google Scholar 

  28. Ye J, Reaman G, De Claro RA, Sridhara R (2020) A Bayesian approach in design and analysis of pediatric cancer clinical trials. Pharm Stat 19(6):814–826

    Article  Google Scholar 

  29. Wang F, Gelfand AE (2002) A simulation-based approach to Bayesian sample size determination for performance under a given model and for separating models. Stat Sci 17(2):193–208

    MathSciNet  MATH  Google Scholar 

  30. Scott E, Eagle M, Mayhew A, Freeman J, Main M, Sheehan J, Manzur A, Muntoni F (2012) for Paediatric Neuromuscular Disease NSCN, Development of a functional assessment scale for ambulatory boys with duchenne muscular dystrophy. Physiother Res Int 17(2):101–109

    Article  Google Scholar 

  31. Goemans N, Signorovitch J, Sajeev G, Yao Z, Gordish-Dressman H, McDonald CM, Vandenborne K, Miller D, Ward SJ, Mercuri E et al (2020) Suitability of external controls for drug evaluation in Duchenne muscular dystrophy. Neurology 95(10):e1381–e1391

    Article  Google Scholar 

  32. Miller NF, Alfano LN, Iammarino MA, Connolly AM, Moore-Clingenpeel M, Powers BR, Tsao CY, Waldrop MA, Flanigan KM, Mendell JR et al (2020) Natural history of steroid-treated young boys with Duchenne muscular dystrophy using the NSAA, 100 m, and timed functional tests. Pediatric Neurol 113:15–20

    Article  Google Scholar 

  33. Coratti G, Brogna C, Norcia G, Ricotti V, Abbott L, D’Amico A, Berardinelli A, Vita GL, Lucibello S, Messina S et al (2019) Longitudinal natural history in young boys with duchenne muscular dystrophy. Neuromuscul Disord 29(11):857–862

    Article  Google Scholar 

  34. Pane M, Mazzone ES, Sivo S, Sormani MP, Messina S, Adele D, Carlesi A, Vita G, Fanelli L, Berardinelli A et al (2014) Long term natural history data in ambulant boys with Duchenne muscular dystrophy: 36-month changes. PLoS ONE 9(10):e108205

    Article  Google Scholar 

  35. Ricotti V, Ridout DA, Pane M, Main M, Mayhew A, Mercuri E, Manzur AY, Muntoni F (2016) The Northstar ambulatory assessment in Duchenne muscular dystrophy: considerations for the design of clinical trials. J Neurol Neurosurg Psychiatry 87(2):149–155

    Google Scholar 

Download references

Acknowledgements

We would like to thank the Editors-in-Chief, the Guest Editors, and two reviewers for their comments and suggestions, which have led to a much improved version of this paper. Ms. Yuan and Dr. Chen’s research was partially supported by REGENXBIO Inc., and Dr. Chen’s research was also partially supported by NIH Grants #GM70335 and #P01CA142538.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Hui Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 113 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, W., Chen, MH. & Zhong, J. Flexible Conditional Borrowing Approaches for Leveraging Historical Data in the Bayesian Design of Superiority Trials. Stat Biosci 14, 197–215 (2022). https://doi.org/10.1007/s12561-021-09321-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12561-021-09321-7

Keywords

Navigation