Skip to main content

Advertisement

Log in

Transesterification of fish oil by lipase immobilized in supercritical carbon dioxide

  • Original Article
  • Chemistry and Biochemistry
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

We have investigated the efficiency of the production of ω-3 polyunsaturated fatty acid (PUFA)-rich diglycerides, monoglycerides, and ethyl esters and measured the effects of supercritical carbon dioxide (SC-CO2) density on inhibiting the production rates in the presence of excess ethanol. In contrast to a solvent-free system, the SC-CO2 system enhanced the decomposition rate of triglycerides and the production rates of diglycerides, monoglycerides, and ethyl esters, regardless of the presence of excess ethanol. The highest conversion was achieved at 10.0 MPa with 3 wt% of Lipozyme® TL-IM at 50 °C and 3.0 molar ratio of ethanol:menhaden oil. The reaction rate and dead-end inhibition were determined at different SC-CO2 densities at a constant temperature. Our results show that SC-CO2 reduces reduce dead-end inhibition in the presence of excess ethanol and increases the reaction rate of lipase due to the specific properties of SC-CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Soumanou MM, Bornscheuer UT (2003) Improvement in lipase-catalyzed synthesis of fatty acid methyl esters from sunflower oil. Enzyme Microb Tech 33:97–103

    Article  CAS  Google Scholar 

  2. Meher LC, Sagar DV, Naik SN (2006) Technical aspects of biodiesel production by transesterification-a review. Renew Sust Energ Rev 10:248–268

    Article  CAS  Google Scholar 

  3. Jaeger KE, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 16:396–403

    Article  CAS  PubMed  Google Scholar 

  4. Sharma R, Chisti Y, Banerjee UC (2001) Production, purification, characterization, and applications of lipases. Biotechnol Adv 19:627–662

    Article  CAS  PubMed  Google Scholar 

  5. Oliveira D, Oliveira JV (2001) Enzymatic alcoholysis of palm kernel oil in n-hexane and SCCO2. J Supercrit Fluid 19:141–148

    Article  CAS  Google Scholar 

  6. Lin TJ, Chen SW, Chang AC (2006) Enrichment of n-3 PUFA contents on triglycerides of fish oil by lipase-catalyzed trans-esterification under supercritical conditions. Biochem Eng J 29:27–34

    Article  CAS  Google Scholar 

  7. Gorreta F, Bernasconi R, Galliani G, Salmona M, Tacconi MT, Bianchi R (2002) Wax esters of n-3 polyunsaturated fatty acids: a new stable formulation as a potential food supplement. 1—digestion and absorption in rats. Lebensm Wiss Technol 35:458–465

    Article  CAS  Google Scholar 

  8. Moquin PHL, Temelli F, Sovova H, Saldana MDA (2006) Kinetic modeling of glycerolysis-hydrolysis of canola oil in supercritical carbon dioxide media using equilibrium data. J Supercrit Fluid 37:417–424

    Article  CAS  Google Scholar 

  9. Yamaguchi I, Akoh CC, Lai OM (2004) Modification of fish oil by Lipozyme® TL IM to produce structured lipid. J Food Lipids 11:65–73

    Article  CAS  Google Scholar 

  10. Simada Y, Watanabe Y, Sugihara A, Tominaga Y (2002) Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. J Mol Catal B-Enzym 17:133–142

    Article  Google Scholar 

  11. Watanabe Y, Shimada Y, Sugihara A, Tominaga Y (1999) Stepwise ethanolysis of tuna oil using immobilized Candida antarctica lipase. J Biosci Bioeng 88:622–626

    Article  CAS  PubMed  Google Scholar 

  12. Brunner G (2005) Supercritical fluids: technology and application to food processing. J Food Eng 67:21–33

    Article  Google Scholar 

  13. Laudani CG, Habulin M, Knez Z, Porta GD, Reverchon E (2007) Immobilized lipase-mediated long-chain fatty acid esterification in dense carbon dioxide: bench-scale packed-bed reactor study. J Supercrit Fluid 41:74–81

    Article  CAS  Google Scholar 

  14. Holčapek M, Jandera P, Fischer J, Prokes B (1999) Analytical monitoring of the production of biodiesel by high-performance liquid chromatography with various detection methods. J Chromatogr A 858:13–31

    Article  PubMed  Google Scholar 

  15. Shibamoto T (1994) Lipid chromatographic analysis. Marcel Dekker, Inc., New York

    Google Scholar 

  16. Weber A, Lee EH, Shin SK, Chun BS (2007) A supercritical fluid-assisted, integrated process for by-products from fat and lipid production. Chem Eng Technol 30:732–736

    Article  CAS  Google Scholar 

  17. Darnoko D, Cheryan M (2000) Kinetics of palm oil: transesterification in a batch reactor. J Am Oil Chem Soc 77:1263–1266

    Article  CAS  Google Scholar 

  18. da Silva C, Vieitez I, Jachmanián I, de Castilhos F, Filho LC, de Oliveira JV (2012) Non-catalytic production of ethyl esters using supercritical ethanol in continuous mode. In: Fang Z (ed) Biodiesel-feedstocks, production and applications. Intech, Rijeka, pp 251–280. doi:10.5772/1094

  19. Pinnarat T, Savage P (2008) Assessment of non-catalytic biodiesel synthesis using supercritical reaction conditions. Ind Eng Chem Res 47:6801–6808

    Article  CAS  Google Scholar 

  20. Knothe G, Gerpen JV, Krahl J (2005) The biodiesel handbook. AOCS Press, Champaign

    Book  Google Scholar 

  21. Marchetti JM, Errazu AF (2008) Technoeconomic study of supercritical biodiesel production plant. Energ Convers Manage 49:2160–2164

    Article  CAS  Google Scholar 

  22. da Silva C, Borges G, de Castilhos F, Oliveira JV, Filho LC (2012) Continuous production of fatty acid ethyl esters from soybean oil at supercritical conditions. Acta Sci Tech 34:185–192

    Google Scholar 

  23. Nascimento FP, Oliveira ARG, Paredes MLL, Costa ALH, Pessoa FLP (2013) Biodiesel production from supercritical ethanolysis of soybean oil. Chem Eng Trans 32:829–834

    Google Scholar 

  24. Kusdiana D, Saka S (2001) Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel 80:225–231

    Article  Google Scholar 

  25. Zhao H, Lu Z, Bie X, Lu F, Liu Z (2007) Lipase catalyzed acidolysis of lard with capric acid in organic solvent. J Food Eng 78:41–46

    Article  CAS  Google Scholar 

  26. Akoh CC, Min DB (2002) Food Lipids: chemistry, nutrition, and Biotechnology, 2nd edn. Marcel Dekker, Inc., New York

    Book  Google Scholar 

  27. Rezaei K, Temelli F, Jenab E (2007) Effects of pressure and temperature on enzymatic reactions in supercritical fluids. Biotechnol Adv 25:272–280

    Article  CAS  PubMed  Google Scholar 

  28. Klibanov AM (1989) Enzymatic catalysis in anhydrous organic solvents. Trends Biochem Sci 14:141–144

    Article  CAS  PubMed  Google Scholar 

  29. Akoh CC, Yee LN, Lisa N (1997) Enzymatic synthesis of position-specific low-calorie structured lipids. J Am Oil Chem Soc 74:1409–1413

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Suk Choi.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roh, MK., Kim, Y.D. & Choi, JS. Transesterification of fish oil by lipase immobilized in supercritical carbon dioxide. Fish Sci 81, 1113–1125 (2015). https://doi.org/10.1007/s12562-015-0926-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-015-0926-z

Keywords

Navigation