Skip to main content
Log in

Zircon Trace Element Constraints on the Evolution of the Paleoproterozoic Birimian Granitoids of the West African Craton (Ghana)

  • Mineralogy and Petrogeochemistry
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

The Paleoproterozoic Birimian granitoids of the West African Craton (WAC) in the northwestern part of Ghana, have been studied for their zircon trace elements concentrations to infer the source characteristics, origin, and magmatic evolution. The zircons in the granitoids have Th/U ratios ranging from 0.03 to 1.55, and display depleted light rare earth elements (LREE) and enriched heavy rare earth elements (HREE) contents, characterized by pronounced positive to negative anomalies of Eu (Eu/Eu*=0.14–0.98 and 1.01–6.06, respectively) and Ce (Ce/Ce*=0.08–0.98 and 1.02–116, respectively), which may imply that they were derived from both magmatic and hydrothermal sources. The geochemical plots of U/Yb vs. Y and Hf, the positive correlation between Hf and the other high field strength elements (HFSE) and high rare earth elements (REE) contents, with enrichment in Ce and depletion in Eu, indicate that the granitoids possibly formed from partial melting of the crust. The trace elements characteristics (i.e., wide range of Hf, Ce/Ce*, Th/U and Zr/Hf values) of the zircons suggest that crystallization of the magma occurred under variable oxidation states, which spanned over a longer period, implying that our data corroborate interpretations from studies of whole-rock geochemistry and geochronology on the granitoids of northwestern Ghana. This further indicates that the evolution of the Birimian granitoids in this part of the WAC occurred earlier than what had been reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Abouchami, W., Boher, M., Michard, A., et al., 1990. A Major 2.1 Ga Event of Mafic Magmatism in West Africa: An Early Stage of Crustal Accretion. Journal of Geophysical Research, 95(B11): 17605–17629. doi:10.1029/jb095ib11p17605

    Article  Google Scholar 

  • Agyei-Duodu, J., Loh, G. K., Boamah, K. D., et al., 2009. Geological Map of Ghana 1: 1 000 000. Geological Survey Department of Ghana (GSD), Accra

    Google Scholar 

  • Amponsah, P. O., Salvi, S., Béziat, D., et al., 2015. Geology and Geochemistry of the Shear-Hosted Julie Gold Deposit, NW Ghana. Journal of African Earth Sciences, 112: 505–523. doi:10.1016/j.jafrearsci.2015.06.013

    Article  Google Scholar 

  • Amponsah, P. O., Salvi, S., Didier, B., et al., 2016. Multistage Gold Mineralization in the Wa-Lawra Greenstone Belt, NW Ghana: The Bepkong Deposit. Journal of African Earth Sciences, 120: 220–237. doi:10.1016/j.jafrearsci.2016.05.005

    Article  Google Scholar 

  • Anum, S., Sakyi, P. A., Su, B. X., et al., 2015. Geochemistry and Geochronology of Granitoids in the Kibi-Asamankese Area of the Kibi-Winneba Volcanic Belt, Southern Ghana. Journal of African Earth Sciences, 102: 166–179. doi:10.1016/j.jafrearsci.2014.11.007

    Article  Google Scholar 

  • Attoh, K., Evans, M. J., Bickford, M. E., 2006. Geochemistry of an Ultramafic-Rodingite Rock Association in the Paleoproterozoic Dixcove Greenstone Belt, Southwestern Ghana. Journal of African Earth Sciences, 45(3): 333–346. doi:10.1016/j.jafrearsci.2006.03.010

    Article  Google Scholar 

  • Baratoux, L., Metelka, V., Naba, S., et al., 2011. Juvenile Paleoproterozoic Crust Evolution during the Eburnean Orogeny (~2.2–2.0 Ga), Western Burkina Faso. Precambrian Research, 191(1/2): 18–45. doi:10.1016/j.precamres.2011.08.010

    Article  Google Scholar 

  • Belousova, E. A., Griffin, W. L., O’Reilly, S. Y., 2006. Zircon Crystal Morphology, Trace Element Signatures and Hf Isotope Composition as a Tool for Petrogenetic Modelling: Examples from Eastern Australian Granitoids. Journal of Petrology, 47(2): 329–353. doi:10.1093/petrology/egi077

    Article  Google Scholar 

  • Belousova, E. A., Griffin, W. L., Pearson, N. J., 1998. Trace Element Composition and Cathodoluminescence Properties of Southern African Kimberlitic Zircons. Mineralogical Magazine, 62(3): 355–366. doi:10.1180/002646198547747

    Article  Google Scholar 

  • Belousova, E. A., Griffin, W. L., O’Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602–622. doi:10.1007/s00410-002-0364-7

    Article  Google Scholar 

  • Béziat, D., Bourges, F., Debat, P., et al., 2000. A Paleoproterozoic Ultramafic-Mafic Assemblage and Associated Volcanic Rocks of the Boromo Greenstone Belt: Fractionates Originating from Island-Arc Volcanic Activity in the West African Craton. Precambrian Research, 101(1): 25–47. doi:10.1016/s0301-9268(99)00085-6

    Article  Google Scholar 

  • Block, S., Ganne, J., Baratoux, L., et al., 2015. Petrological and Geochronological Constraints on Lower Crust Exhumation during Paleoproterozoic (Eburnean) Orogeny, NW Ghana, West African Craton. Journal of Metamorphic Geology, 33(5): 463–494. doi:10.1111/jmg.12129

    Article  Google Scholar 

  • Block, S., Jessell, M., Aillères, L., et al., 2016a. Lower Crust Exhumation during Paleoproterozoic (Eburnean) Orogeny, NW Ghana, West African Craton: Interplay of Coeval Contractional Deformation and Extensional Gravitational Collapse. Precambrian Research, 274: 82–109. doi:10.1016/j.precamres.2015.10.014

    Article  Google Scholar 

  • Block, S., Baratoux, L., Zeh, A., et al., 2016b. Paleoproterozoic Juvenile Crust Formation and Stabilisation in the South-Eastern West African Craton (Ghana); New Insights from U-Pb-Hf Zircon Data and Geochemistry. Precambrian Research, 287: 1–30. doi:10.1016/j.precamres.2016.10.011

    Article  Google Scholar 

  • Boher, M., Abouchami, W., Michard, A., et al., 1992. Crustal Growth in West Africa at 2.1 Ga. Journal of Geophysical Research, 97(B1): 345–369. doi:10.1029/91jb01640

    Article  Google Scholar 

  • Bolhar, R., Weaver, S. D., Palin, J. M., et al., 2008. Systematics of Zircon Crystallisation in the Cretaceous Separation Point Suite, New Zealand, Using U/Pb Isotopes, REE and Ti Geothermometry. Contributions to Mineralogy and Petrology, 156(2): 133–160. doi:10.1007/s00410-007-0278-5

    Article  Google Scholar 

  • Bottazzi, P., Tiepolo, M., Vannucci, R., et al., 1999. Distinct Site Preferences for Heavy and Light REE in Amphibole and the Prediction of Amph/LDREE. Contributions to Mineralogy and Petrology, 137(1/2): 36–45. doi:10.1007/s004100050580

    Article  Google Scholar 

  • Boynton, W. V., 1984. Geochemistry of Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed., Rare Earth Element Geochemistry. Elsevier, Amsterdam. 63–114. doi:10.1016/B978-0-444-42148-7.50008-3

  • Cao, Y., Li, S. R., Zhang, H. F., et al., 2011. Significance of Zircon Trace Element Geochemistry, the Shihu Gold Deposit, Western Hebei Province, North China. Journal of Rare Earths, 29(3): 277–286. doi:10.1016/s1002-0721(10)60445-0

    Article  Google Scholar 

  • Dampare, S. B., Shibata, T., Asiedu, D. K., et al., 2008. Geochemistry of Paleoproterozoic Metavolcanic Rocks from the Southern Ashanti Volcanic Belt, Ghana: Petrogenetic and Tectonic Setting Implications. Precambrian Research, 162(3/4): 403–423. doi:10.1016/j.precamres.2007.10.001

    Article  Google Scholar 

  • Davis, D. W., Hirdes, W., Schaltegger, U., et al., 1994. U-Pb Age Constraints on Deposition and Provenance of Birimian and Gold-Bearing Tarkwaian Sediments in Ghana, West Africa. Precambrian Research, 67(1/2): 89–107. doi:10.1016/0301-9268(94)90006-x

    Article  Google Scholar 

  • de Kock, G. S., Armstrong, R. A., Siegfried, H. P., et al., 2011. Geochronology of the Birim Supergroup of the West African Craton in the Wa-Bolé Region of West-Central Ghana: Implications for the Stratigraphic Framework. Journal of African Earth Sciences, 59(1): 1–40. doi:10.1016/j.jafrearsci.2010.08.001

    Article  Google Scholar 

  • de Kock, G. S., Théveniaut, H., Botha, P. M. W., et al., 2012. Timing the Structural Events in the Palaeoproterozoic Bolé-Nangodi Belt Terrane and Adjacent Maluwe Basin, West African Craton, in Central-West Ghana. Journal of African Earth Sciences, 65: 1–24. doi:10.1016/j.jafrearsci.2011.11.007

    Article  Google Scholar 

  • Doumbia, S., Pouclet, A., Kouamelan, A., et al., 1998. Petrogenesis of Juvenile-Type Birimian (Paleoproterozoic) Granitoids in Central Côted'Ivoire, West Africa: Geochemistry and Geochronology. Precambrian Research, 87(1/2): 33–63. doi:10.1016/s0301-9268(97)00201-5

    Article  Google Scholar 

  • El-Bialy, M. Z., Ali, K. A., 2013. Zircon Trace Element Geochemical Constraints on the Evolution of the Ediacaran (600–614 Ma) Post-Collisional Dokhan Volcanics and Younger Granites of SE Sinai, NE Arabian-Nubian Shield. Chemical Geology, 360/361: 54–73. doi:10.1016/j.chemgeo.2013.10.009

    Article  Google Scholar 

  • Ferry, J. M., Watson, E. B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429–437. doi:10.1007/s00410-007-0201-0

    Article  Google Scholar 

  • Fu, B., Mernagh, T. P., Kita, N. T., et al., 2009. Distinguishing Magmatic Zircon from Hydrothermal Zircon: A Case Study from the Gidginbung High-Sulphidation Au-Ag-(Cu) Deposit, SE Australia. Chemical Geology, 259(3/4): 131–142. doi:10.1016/j.chemgeo.2008.10.035

    Article  Google Scholar 

  • Gagnevin, D., Daly, J. S., Kronz, A., 2010. Zircon Texture and Chemical Composition as a Guide to Magmatic Processes and Mixing in a Granitic Environment and Coeval Volcanic System. Contributions to Mineralogy and Petrology, 159(4): 579–596. doi:10.1007/s00410-009-0443-0

    Article  Google Scholar 

  • Ganne, J., De Andrade, V., Weinberg, R. F., et al., 2012. Modern-Style Plate Subduction Preserved in the Palaeoproterozoic West African Craton. Nature Geoscience, 5(1): 60–65. doi:10.1038/ngeo1321

    Article  Google Scholar 

  • Gordon, S. M., Whitney, D. L., Teyssier, C., et al., 2013. U-Pb Dates and Trace-Element Geochemistry of Zircon from Migmatite, Western Gneiss Region, Norway: Significance for History of Partial Melting in Continental Subduction. Lithos, 170/171: 35–53. doi:10.1016/j.lithos.2013.02.003

    Article  Google Scholar 

  • Grimes, C. B., John, B. E., Kelemen, P. B., et al., 2007. Trace Element Chemistry of Zircons from Oceanic Crust: A Method for Distinguishing Detrital Zircon Provenance. Geology, 35(7): 643–646. doi:10.1130/g23603a.1

    Article  Google Scholar 

  • Hafnadóttir, M. O., 2014. Understanding Igneous Processes through Zircon Trace Element Systematics: Prospects and Pitfall: [Dissertation]. Lund University, Lund. 109

    Google Scholar 

  • Harrison, T. M., Watson, E. B., Aikman, A. B., 2007. Temperature Spectra of Zircon Crystallization in Plutonic Rocks. Geology, 35(7): 635–638. doi:10.1130/g23505a.1

    Article  Google Scholar 

  • Heaman, L. M., Bowins, R., Crocket, J., 1990. The Chemical Composition of Igneous Zircon Suites: Implications for Geochemical Tracer Studies. Geochimica et Cosmochimica Acta, 54(6): 1597–1607. doi:10.1016/0016-7037(90)90394-z

    Article  Google Scholar 

  • Hirdes, W., Davis, D. W., 1998. First U-Pb Zircon Age of Extrusive Volcanism in the Birimian Supergroup of Ghana, West Africa. Journal of African Earth Sciences, 27(2): 291–294. doi:10.1016/s0899-5362(98)00062-1

    Article  Google Scholar 

  • Hirdes, W., Davis, D. W., Eisenlohr, B. N., 1992. Reassessment of Proterozoic Granitoid Ages in Ghana on the Basis of U/Pb Zircon and Monazite Dating. Precambrian Research, 56(1/2): 89–96. doi:10.1016/0301-9268(92)90085-3

    Article  Google Scholar 

  • Hoskin, P. W. O., 1998. Minor and Trace Element Analysis of Natural Zircon (ZrSiO4) by SIMS and Laser Ablation ICPMS: A Consideration and Comparison of Two Broadly Competitive Techniques. Journal of Trace and Microprobe Techniques, 16: 301–326

    Google Scholar 

  • Hoskin, P. W. O., 2005. Trace-Element Composition of Hydrothermal Zircon and the Alteration of Hadean Zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta, 69(3): 637–648. doi:10.1016/j.gca.2004.07.006

    Article  Google Scholar 

  • Hoskin, P. W. O., Ireland, T. R., 2000. Rare Earth Element Chemistry of Zircon and Its Use as a Provenance Indicator. Geology, 28(7): 627–630. doi:10.1130/0091-7613(2000)28<627:reecoz>2.0.co;2

    Article  Google Scholar 

  • Hoskin, P. W. O., Kinny, P. D., Wyborn, D., et al., 2000. Identifying Accessory Mineral Saturation during Differentiation in Granitoid Magmas: An Integrated Approach. Journal of Petrology, 41(9): 1365–1396. doi:10.1093/petrology/41.9.1365

    Article  Google Scholar 

  • Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. In: Hanchar, J. M., Hoskin, P. W. O., eds., Zircon. Reviews in Mineralogy and Geochemistry, 53(1): 27–62. doi:10.2113/0530027

    Article  Google Scholar 

  • Hu, Z. L., Wang, X. W., Qin, Z. P., et al., 2012. Basic Characteristics of Zircon Trace Elements and Their Genetic Significances in Jiama Copper Polymetallic Deposit. Nonferrous Metals (Min. Sect.), 64: 58–63 (in Chinese with English Abstract)

    Google Scholar 

  • Kesse, G. O., 1985. The Mineral and Rock Resources of Ghana. Balkema, Rotterdam/Boston

    Google Scholar 

  • Lei, W. Y., Shi, G. H., Liu, Y. X., 2013. Research Progress on Trace Element Characteristics of Zircons of Different Origins. Frontiers of Earth Science, 20: 1–12

    Google Scholar 

  • Li, H., Watanabe, K., Yonezu, K., 2014. Zircon Morphology, Geochronology and Trace Element Geochemistry of the Granites from the Huangshaping Polymetallic Deposit, South China: Implications for the Magmatic Evolution and Mineralization Processes. Ore Geology Reviews, 60: 14–35. doi:10.1016/j.oregeorev.2013.12.009

    Article  Google Scholar 

  • Li, N., Chen, Y. J., Pirajno, F., et al., 2012. LA-ICP-MS Zircon U-Pb Dating, Trace Element and Hf Isotope Geochemistry of the Heyu Granite Batholith, Eastern Qinling, Central China: Implications for Mesozoic Tectono-Magmatic Evolution. Lithos, 142/143: 34–47. doi:10.1016/j.lithos.2012.02.013

    Article  Google Scholar 

  • Linnen, R. L., Keppler, H., 2002. Melt Composition Control of Zr/Hf Fractionation in Magmatic Processes. Geochimica et Cosmochimica Acta, 66(18): 3293–3301. doi:10.1016/s0016-7037(02)00924-9

    Article  Google Scholar 

  • Liu, X. M., Gao, S., Diwu, C. R., et al., 2007. Simultaneous In-Situ Determination of U-Pb Age and Trace Elements in Zircon by LA-ICP-MS in 20 μm Spot Size. Chinese Science Bulletin, 52(9): 1257–1264. doi:10.1007/s11434-007-0160-x

    Article  Google Scholar 

  • Lompo, M., 2009. Geodynamic Evolution of the 2.25–2.0 Ga Palaeoproterozoic Magmatic Rocks in the Man-Leo Shield of the West African Craton: A Model of Subsidence of an Oceanic Plateau. Geological Society, London, Special Publications, 323(1): 231–254. doi:10.1144/sp323.11

    Article  Google Scholar 

  • Montero, P., Haissen, F., Mouttaqi, A., et al., 2016. Contrasting SHRIMP U-Pb Zircon Ages of Two Carbonatite Complexes from the Peri-Cratonic Terranes of the Reguibat Shield: Implications for the Lateral Extension of the West African Craton. Gondwana Research, 38: 238–250. doi:10.1016/j.gr.2015.12.005

    Article  Google Scholar 

  • Opare-Addo, E., John, B. E., Browing, P., 1993. Field and Geochronologic (U-Pb) Constraints on the Age and Generation of Granitoids and Migmatites in Southern Ghana. EOS Trans AGU Abstract Supplement, 74: S30.1

    Article  Google Scholar 

  • Orejana, D., Villaseca, C., Armstrong, R. A., et al., 2011. Geochronology and Trace Element Chemistry of Zircon and Garnet from Granulite Xenoliths: Constraints on the Tectonothermal Evolution of the Lower Crust under Central Spain. Lithos, 124(1/2): 103–116. doi:10.1016/j.lithos.2010.10.011

    Article  Google Scholar 

  • Page, F. Z., Fu, B., Kita, N. T., et al., 2007. Zircons from Kimberlite: New Insights from Oxygen Isotopes, Trace Elements, and Ti in Zircon Thermometry. Geochimica et Cosmochimica Acta, 71(15): 3887–3903. doi:10.1016/j.gca.2007.04.031

    Article  Google Scholar 

  • Parra-Avila, L. A., Belousova, E., Fiorentini, M. L., et al., 2016. Crustal Evolution of the Paleoproterozoic Birimian Terranes of the Baoulé-Mossi Domain, Southern West African Craton: U-Pb and Hf-Isotope Studies of Detrital Zircons. Precambrian Research, 274: 25–60. doi:10.13039/501100000923

    Article  Google Scholar 

  • Petersson, A., Scherstén, A., Kemp, A. I. S., et al., 2016. Zircon U-Pb-Hf Evidence for Subduction Related Crustal Growth and Reworking of Archaean Crust within the Palaeoproterozoic Birimian Terrane, West African Craton, SE Ghana. Precambrian Research, 275: 286–309. doi:10.1016/j.precamres.2016.01.006

    Article  Google Scholar 

  • Pettke, T., Audétat, A., Schaltegger, U., et al., 2005. Magmatic-to-Hydrothermal Crystallization in the W-Sn Mineralized Mole Granite (NSW, Australia). Chemical Geology, 220(3/4): 191–213. doi:10.1016/j.chemgeo.2005.02.017

    Article  Google Scholar 

  • Peucat, J. J., Capdevila, R., Drareni, A., et al., 2005. The Eglab Massif in the West African Craton (Algeria), an Original Segment of the Eburnean Orogenic Belt: Petrology, Geochemistry and Geochronology. Precambrian Research, 136(3/4): 309–352. doi:10.1016/j.precamres.2004.12.002

    Article  Google Scholar 

  • Pobedash, I. D., 1991. Report on the Geology and Minerals of the South-Western Part of the Wa Field Sheet. Ghana Geological Survey Archive Report, 51: 95

    Google Scholar 

  • Poller, U., 2001. REE, U, Th, and Hf Distribution in Zircon from Western Carpathian Variscan Granitoids: A Combined Cathodoluminescence and Ion Microprobe Study. American Journal of Science, 301(10): 858–876. doi:10.2475/ajs.301.10.858

    Article  Google Scholar 

  • Rayner, N., Stern, R. A., Carr, S. D., 2005. Grain-Scale Variations in Trace Element Composition of Fluid-Altered Zircon, Acasta Gneiss Complex, Northwestern Canada. Contributions to Mineralogy and Petrology, 148(6): 721–734. doi:10.1007/s00410-004-0633-8

    Article  Google Scholar 

  • Roudakov, V. M., 1991. Report on the Geology and Minerals of the Northwestern Part of the Wa Field Sheet. Ghana Geological Survey Archive Report, 50: 95

    Google Scholar 

  • Rubatto, D., 2002. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology, 184(1/2): 123–138. doi:10.1016/s0009-2541(01)00355-2

    Article  Google Scholar 

  • Rudnick, R., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry, 3: 1–64

    Google Scholar 

  • Sakyi, P. A., Su, B. X., Anum, S., et al., 2014. New Zircon U-Pb Ages for Erratic Emplacement of 2 213–2 130 Ma Paleoproterozoic Calc-Alkaline I-Type Granitoid Rocks in the Lawra Volcanic Belt of Northwestern Ghana, West Africa. Precambrian Research, 254: 149–168. doi:10.13039/501100001809

    Article  Google Scholar 

  • Samokhin, A. A., Lashmanov, V. I., 1991. Geology and Minerals of the Northern Part of the Bole Field Sheet. Ghana. Ghana Geological Survey Archive Report, 53: 118

    Google Scholar 

  • Sylvester, P. J., Attoh, K., 1992. Lithostratigraphy and Composition of 2.1 Ga Greenstone Belts of the West African Craton and Their Bearing on Crustal Evolution and the Archean-Proterozoic Boundary. The Journal of Geology, 100(4): 377–393. doi:10.1086/629593

    Article  Google Scholar 

  • Tapsoba, B., Lo, C. H., Jahn, B. M., et al., 2013a. Chemical and Sr-Nd Isotopic Compositions and Zircon U-Pb Ages of the Birimian Granitoids from NE Burkina Faso, West African Craton: Implications on the Geodynamic Setting and Crustal Evolution. Precambrian Research, 224: 364–396. doi:10.1016/j.precamres.2012.09.013

    Article  Google Scholar 

  • Tapsoba, B., Lo, C. H., Wenmenga, U., et al., 2013b. 40Ar/39Ar Thermochronology of Paleoproterozoic Granitoids of Northeast Burkina Faso, West African Craton: Implications for Regional Tectonics. Precambrian Research, 235: 208–229. doi:10.1016/j.precamres.2013.06.012

    Article  Google Scholar 

  • Vidal, M., Alric, G., 1994. The Palaeoproterozoic (Birimian) of Haute-Comoé in the West African Craton, Ivory Coast: A Transtensional Back-Arc Basin. Precambrian Research, 65(1/2/3/4): 207–229. doi:10.1016/0301-9268(94)90106-6

    Article  Google Scholar 

  • Wang, F. Y., Liu, S. A., Li, S. G., et al., 2013. Contrasting Zircon Hf-O Isotopes and Trace Elements between Ore-Bearing and Ore-Barren Adakitic Rocks in Central-Eastern China: Implications for Genetic Relation to Cu-Au Mineralization. Lithos, 156–159: 97–111. doi:10.1016/j.lithos.2012.10.017

    Article  Google Scholar 

  • Wang, Q., Zhu, D. C., Zhao, Z. D., et al., 2012. Magmatic Zircons from I-, S-and A-Type Granitoids in Tibet: Trace Element Characteristics and Their Application to Detrital Zircon Provenance Study. Journal of Asian Earth Sciences, 53: 59–66. doi:10.1016/j.jseaes.2011.07.027

    Article  Google Scholar 

  • Wang, X., Griffin, W. L., Chen, J., et al., 2011. U and Th Contents and Th/U Ratios of Zircon in Felsic and Mafic Magmatic Rocks: Improved Zircon-Melt Distribution Coefficients. Acta Geologica Sinica—English Edition, 85(1): 164–174. doi:10.1111/j.1755-6724.2011.00387.x

    Article  Google Scholar 

  • Wang, X., Pupin, J. P., 1992. Distribution Characteristics of Trace Elements in Zircons from Granitic Rocks. Scientia Geologica Sinica, 2: 131–140

    Google Scholar 

  • Whitehouse, M. J., Kamber, B. S., 2002. On the Overabundance of Light Rare Earth Elements in Terrestrial Zircons and Its Implication for Earth’s Earliest Magmatic Differentiation. Earth and Planetary Science Letters, 204(3/4): 333–346. doi:10.1016/s0012-821x(02)01000-2

    Article  Google Scholar 

  • Whitehouse, M. J., Platt, J. P., 2003. Dating High-Grade Metamorphism— Constraints from Rare-Earth Elements in Zircon and Garnet. Contributions to Mineralogy and Petrology, 145(1): 61–74. doi:10.1007/s00410-002-0432-z

    Article  Google Scholar 

  • Wilde, S. A., Youssef, K., 2000. Significance of SHRIMP U-Pb Dating of the Imperial Porphyry and Associated Dokhan Volcanics, Gebel Dokhan, North Eastern Desert, Egypt. Journal of African Earth Sciences, 31(2): 403–413. doi:10.1016/s0899-5362(00)00096-8

    Article  Google Scholar 

  • Wood, D. A., Joron, J. L., Treuil, M., 1979. A Re-Appraisal of the Use of Trace Elements to Classify and Discriminate between Magma Series Erupted in Different Tectonic Settings. Earth and Planetary Science Letters, 45(2): 326–336. doi:10.1016/0012-821x(79)90133-x

    Article  Google Scholar 

  • Wu, T., Xiao, L., Ma, C. Q., 2016. U-Pb Geochronology of Detrital and Inherited Zircons in the Yidun Arc Belt, Eastern Tibet Plateau and Its Tectonic Implications. Journal of Earth Science, 27(3): 461–473. doi:10.1007/s12583-016-0675-5

    Article  Google Scholar 

  • Xia, Q. X., Zheng, Y. F., Hu, Z. C., 2010. Trace Elements in Zircon and Coexisting Minerals from Low-T/UHP Metagranite in the Dabie Orogen: Implications for Action of Supercritical Fluid during Continental Subduction-Zone Metamorphism. Lithos, 114(3/4): 385–412. doi:10.1016/j.lithos.2009.09.013

    Article  Google Scholar 

  • Xie, L. W., Zhang, Y. B., Zhang, H. H., et al., 2008. In Situ Simultaneous Determination of Trace Elements, U-Pb and Lu-Hf Isotopes in Zircon and Baddeleyite. Science Bulletin, 53(10): 1565–1573. doi:10.1007/s11434-008-0086-y

    Article  Google Scholar 

  • Zhang, X. W., Xiang, H., Zhong, Z. Q., et al., 2009. U-Pb Dating and Trace Elements Composition of Hydrothermal Zircons from Jianfengling Granite, Hainan: Restriction on the Age of Hydrothermal Event and Mineralization of Baolun Gold Deposit. Earth Science—Journal of China University of Geosciences, 34: 921–930 (in Chinese with English Abstract)

    Article  Google Scholar 

  • Zhao, K. D., Jiang, S. Y., Sun, T., et al., 2013. Zircon U-Pb Dating, Trace Element and Sr-Nd-Hf Isotope Geochemistry of Paleozoic Granites in the Miao’ershan-Yuechengling Batholith, South China: Implication for Petrogenesis and Tectonic-Magmatic Evolution. Journal of Asian Earth Sciences, 74: 244–264. doi:10.1016/j.jseaes.2012.12.026

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the National Natural Science Foundation of China (No. 41522203) and the Youth Innovation Promotion Association, Chinese Academy of Sciences (No. 2016067) to Benxun Su. The authors wish to acknowledge Sai- Hong Yang of the Electron Microscopy Laboratory of IGGCAS for her assistance during the acquisition of CL images. We are also grateful to the Eastern Regional Office of the Geological Survey Department of Ghana, for providing logistical support and assisting in the field work. The final publication is available at Springer via https://doi.org/10.1007/s12583-017-0799-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Asamoah Sakyi.

Electronic supplementary material

Table S1

Trace element concentrations (ppm) and U-Pb ages for the zircons from the granitoids of the Lawra greenstone belt. U-Pb ages are from Sakyi et al. (2014)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakyi, P.A., Su, B., Kwayisi, D. et al. Zircon Trace Element Constraints on the Evolution of the Paleoproterozoic Birimian Granitoids of the West African Craton (Ghana). J. Earth Sci. 29, 43–56 (2018). https://doi.org/10.1007/s12583-017-0799-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-017-0799-4

Key words

Navigation