Skip to main content
Log in

Genesis of the Gentio Metagranitoid: Post-Collisional High-K Plutonism within the Mineiro Belt, São Francisco Craton, Brazil

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

The Gentio metagranitoid presents equigranular and porphyritic facies, modal composition ranging from tonalite to monzogranite with calculated TZr<800 °C for most samples. Its mineralogy is dominated by quartz and feldspar (77% to 95%), biotite is the only mafic mineral present (2% to 18%) and, titanite, zircon, apatite, allanite are important accessory phases. These rocks range from metaluminous to weakly peraluminous, and have large variation in major and trace elements, and high alkali contents (>6 wt.%). Zircon analyses by LA-ICP-MS and SHRIMP yielded a concordia age of 2 119±10 Ma for the porphyritic facies and an upper intercept age of 2 111±15 Ma for the equigranular facies. The whole-rock Sm-Nd TDM ages vary from 2.4 to 2.8 Ga with εNd(2.1) values between −0.7 and −5.3, indicating crustal derivation from distinct and/or heterogeneous protoliths. Field observations indicate that the Gentio metagranitoid was formed through different pulses of magma. Individual batches were subject to little or even no fractionation process after its emplacement. Although the Gentio metagranitoid crosscuts metamafic and metaultramafic rocks akin to an oceanic arc setting, this pluton is likely originated by partial melting of a more evolved quartz-feldspathic crustal igneous rock in a post-collisional environment, after the accretion of the arcs from the Mineiro belt and rocks of the Mantiqueira Complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Abdel-Rahman, A. F. M., 1994. Nature of Biotites from Alkaline, Calc-Alkaline, and Peraluminous Magmas. Journal of Petrology, 35(2): 525–541. https://doi.org/10.1093/petrology/35.2.525

    Article  Google Scholar 

  • Alkmim, F. F., Teixeira, W., 2017. The Paleoproterozoic Mineiro Belt and the Cuadrilátero Ferrífero. In: Heilbron, M., Cordani, U., Alkmim, F., eds., São Francisco Craton, Eastern Brazil: Tectonic Genealogy of a Miniature Continent (Regional Geology Reviews). Springer. 45–62. https://doi.org/10.1007/978-3-319-01715-0_5

  • Annen, C., 2011. Implications of Incremental Emplacement of Magma Bodies for Magma Differentiation, Thermal Aureole Dimensions, and Plutonism-Volcanism Relationships. Tectonophysics, 500(1–4): 3–10. https://doi.org/10.1016/j.tecto.2009.04.010

    Article  Google Scholar 

  • Ávila, C. A., Bezerra Filho, A. P., Oliveira, N. D. B., et al., 2006a. Resultados Preliminares da Geologia do Quartzo Diorito Dores do Campo, Região de Tiradentes—Dores do Campo, Estado de Minas Gerais. In: XLIII Congresso Brasileiro de Geologia, Aracaju. 1: 183 (in Portuguese)

  • Ávila, C. A., Teixeira, W., Cordani, U. G., et al., 2006b. The Glória Quartz-Monzodiorite: Isotopic and Chemical Evidence of Arc-Related Magmatism in the Central Part of the Paleoproterozoic Mineiro Belt, Minas Gerais State, Brazil. Anais da Academia Brasileira de Ciencias, 78(3): 543–556. https://doi.org/10.1590/s0001-37652006000300013

    Article  Google Scholar 

  • Ávila, C. A., Teixeira, W., Cordani, U. G., et al., 2010. Rhyacian (2.23–2.20 Ga) Juvenile Accretion in the Southern São Francisco Craton, Brazil

  • Geochemical and Isotopic Evidence from the Serrinha Magmatic Suite, Mineiro Belt. Journal of South America Earth Sciences, 29(2): 464–482. https://doi.org/10.1016/j.jsames.2009.07.009

  • Ávila, C. A., Teixeira, W., Vasques, F. S. G., et al., 2012. Geoquímica e Idade U-Pb (LA-ICPMS) da Crosta Oceânica Riaciana do Cinturão Mineiro, Borda Meridional do Cráton São Francisco. Anais do Congresso Brasileiro de Geologia, 46: 4–5

    Google Scholar 

  • Ávila, C. A., Teixeira, W., Bongiolo, E. M., et al., 2014. Rhyacian Evolution of Subvolcanic and Metasedimentary Rocks of the Southern Segment of the Mineiro Belt, São Francisco Craton, Brazil. Precambrian Research, 243(4): 221–251. https://doi.org/10.1016/j.precamres.2013.12.028

    Article  Google Scholar 

  • Barbosa, N. S., Teixeira, W., Ávila, C. A., et al., 2015. 2.17–2.10 Ga Plutonic Episodes in the Mineiro Belt, São Francisco Craton, Brazil: U-Pb Ages, Geochemical Constraints and Tectonics. Precambrian Research, 270: 204–225. https://doi.org/10.1016/j.precamres.2015.09.010

    Article  Google Scholar 

  • Barbosa, N. T., Teixeira, W., Ávila, C. A., et al., 2019. U-Pb Geochronology and Coupled Hf-Nd-Sr Isotopic-Chemical Constraints on the Cassiterita Orthogneiss (2.47 to 2.41 Ga) in the Mineiro Belt, São Francisco Craton: Geodynamic Fingerprints beyond the Archean-Paleoproterozoic Transition. Precambrian Research, 326: 399–416. https://doi.org/10.1016/j.precamres.2018.01.017

    Article  Google Scholar 

  • Bea, F., 1996. Controls on the Trace Element Composition of Crustal Melts. Special Paper of the Geological Society of America, 315: 33–41. https://doi.org/10.1130/0-8137-2315-9.33

    Google Scholar 

  • Beard, J. S., Lofgren, G. E., 1991. Dehydration Melting and Water-Saturated Melting of Basaltic and Andesitic Greenstones and Amphibolites at 1, 3, and 6.9 kb. Journal of Petrology, 32(2): 365–401. https://doi.org/10.1093/petrology/32.2.365

    Article  Google Scholar 

  • Black, L. P., Kamo, S. L., Allen, C. M., et al., 2003. TEMORA 1: A New Zircon Standard for Phanerozoic U-Pb Geochronology. Chemical Geology, 200(1/2): 155–170. https://doi.org/10.1016/s0009-2541(03)00165-7

    Article  Google Scholar 

  • Boehnke, P., Watson, E. B., Trail, D., et al., 2013. Zircon Saturation Re-Revisited. Chemical Geology, 351: 324–334. https://doi.org/10.1016/j.chemgeo.2013.05.028

    Article  Google Scholar 

  • Cardoso, C. D., Ávila, C. A., Neumann, R., et al., 2019. A Rhyacian Continental Arc during the Evolution of the Mineiro Belt, Brazil: Constraints from the Rio Grande and Brumado Metadiorites. Lithos, 326/327: 246–264. https://doi.org/10.1016/j.lithos.2018.12.025

    Article  Google Scholar 

  • Clemens, J. D., Wall, V. J., 1981. Origin and Crystallization of some Peraluminous (S-Type) Granitic Magmas. Canadian Mineralogist, 19(1): 111–131

    Google Scholar 

  • Clemens, J. D., Vielzeuf, D., 1987. Constraints on Melting and Magma Production in the Crust. Earth and Planetary Science Letters, 86(2–4): 287–306. https://doi.org/10.1016/0012-821x(87)90227-5

    Article  Google Scholar 

  • Clemens, J. D., Helps, P. A., Stevens, G., 2009. Chemical Structure in Granitic Magmas—A Signal from the Source?. Special Paper of the Geological Society of America, 472: 159–172. https://doi.org/10.1130/2010.2472(11)

    Google Scholar 

  • Condie, K., 2015. Changing Tectonic Settings through Time: Indiscriminate Use of Geochemical Discriminant Diagrams. Precambrian Research, 266: 587–591. https://doi.org/10.1016/j.precamres.2015.05.004

    Article  Google Scholar 

  • Conrad, W. K., Nicholls, I. A., Wall, V. J., 1988. Water-Saturated and -Undersaturated Melting of Metaluminous and Peraluminous Crustal Compositions at 10 kb: Evidence for the Origin of Silicic Magmas in the Taupo Volcanic Zone, New Zealand, and Other Occurrences. Journal of Petrology, 29(4): 765–803

    Article  Google Scholar 

  • DePaolo, D. J., 1981. A Neodymium and Strontium Isotopic Study of the Mesozoic Calc-Alkaline Granitic Batholiths of the Sierra Nevada and Peninsular Ranges, California. Journal of Geophysical Research, 86(B11): 10470–10488. https://doi.org/10.1029/jb086ib11p10470

    Article  Google Scholar 

  • Duarte, B. P., Valente, S. C., Heilbron, M., et al., 2004. Petrogenesis of the Orthogneisses of the Mantiqueira Complex, Central Ribeira Belt, SE Brazil: An Archaean to Palaeoproterozoic Basement Unit Reworked During the Pan-African Orogeny. Gondwana Research, 7(2): 437–450. https://doi.org/10.1016/s1342-937x(05)70795-4

    Article  Google Scholar 

  • Ebadi, A., Johannes, W., 1991. Beginning of Melting and Composition of First Melts in the System Qz-Ab-Or-H2O-CO2. Contributions to Mineralogy and Petrology, 106(3): 286–295. https://doi.org/10.1007/bf00324558

    Article  Google Scholar 

  • Elhlou, S., Belousova, E., Griffin, W. L., et al., 2006. Trace Element and Isotopic Composition of GJ-Red Zircon Standard by Laser Ablation. Geochimica et Cosmochimica Acta, 70(18): A158. https://doi.org/10.1016/j.gca.2006.06.1383

    Article  Google Scholar 

  • Farina, F., Stevens, G., Villaros, A., 2012. Multi-Batch, Incremental Assembly of a Dynamic Magma Chamber: The Case of the Peninsula Pluton Granite (Cape Granite Suite, South Africa). Mineralogy and Petrology, 106(3/4): 193–216. https://doi.org/10.1007/s00710-012-0224-8

    Article  Google Scholar 

  • Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033–2048. https://doi.org/10.1093/petrology/42.11.2033

    Article  Google Scholar 

  • Heilbron, M., Duarte, B. P., Valeriano, C. M., et al., 2010. Evolution of Reworked Paleoproterozoic Basement Rocks within the Ribeira Belt (Neoproterozoic), SE-Brazil, Based on U-Pb Geochronology: Implications for Paleogeographic Reconstructions of the São Francisco-Congo Paleocontinent. Precambrian Research, 178(1–4): 136–148. https://doi.org/10.1016/j.precamres.2010.02.002

    Article  Google Scholar 

  • Heilbron, M., Ribeiro, A., Valeriano, C. M., et al., 2017. The Ribeira Belt. In: Heilbron, M., Cordani, U., Alkmim, F., eds., São Francisco Craton, Eastern Brazil: Tectonic Genealogy of a Miniature Continent (Regional Geology Reviews). Springer. 277–302

  • Higgins, M. D., 1999. Origin of Megacrysts in Granitoids by Textural Coarsening; A Crystal Size Distribution (CSD) Study of Microcline in the Cathedral Peak Granodiorite, Sierra Nevada, California. In: Fernandez, C., Castro, A., Vigneresse, J. L., eds., Understanding Granites: Integrating Modern and Classical Techniques. Geological Society Special, 168: 207–219

  • Holtz, F., Barbey, P., Johannes, W., et al., 1989. Composition and Temperature at the Minimum Point in the Qz-Ab-Or System for H2O-Undersaturated Conditions: Experimental Investigation. Terra Cognita, 1: 271–272

    Google Scholar 

  • Holtz, F., Johannes, W., 1991. Genesis of Peraluminous Granites: I. Experimental Investigation of Melt Composition at 3 and 5 kb and Various H2O Activities. Journal of Petrology, 32(5): 935–958. https://doi.org/10.1093/petrology/32.5.935

    Article  Google Scholar 

  • Holtz, F., Johannes, W., Tamic, N., et al., 2001. Maximum and Minimum Water Contents of Granitic Melts Generated in the Crust: A Reevaluation and Implications. Lithos, 56(1): 1–14. https://doi.org/10.1016/s0024-4937(00)00056-6

    Article  Google Scholar 

  • Johannes, W., Holtz, F., 1996. Petrogenesis and Experimental Petrology of Granitic Rocks. Springer, Berlin. 335

    Book  Google Scholar 

  • Johnson, B. R., Glazner, A. F., 2010. Formation of K-Feldspar Megacrysts in Granodioritic Plutons by Thermal Cycling and Late-Stage Textural Coarsening. Contributions to Mineralogy and Petrology, 159(5): 599–619. https://doi.org/10.1007/s00410-009-0444-z

    Article  Google Scholar 

  • Kösler, J., Fonneland, H., Sylvester, P., et al., 2002. U-Pb Dating of Detrital Zircons for Sediment Provenance Studies—A Comparison of Laser Ablation ICPMS and SIMS Techniques. Chemical Geology, 182(2): 605–618. https://doi.org/10.1016/s0009-2541(01)00341-2

    Article  Google Scholar 

  • Ludwig, K. R., 2001. Squid (1.13b): A User’s Manual. Berkeley Geochronology Center Special Publication, Berkeley. 2

    Google Scholar 

  • Ludwig, K. R., 2003. User’s Manual for ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center Special Publication, Berkeley. 4: 70

    Google Scholar 

  • Luth, W. C., Jahns, R. H., Tuttle, O. F., 1964. The Granite System at Pressure of 4 to 10 Kilobars. Journal of Geophysical Research, 69: 759–773

    Article  Google Scholar 

  • Maalöe, S., Wyllie, P. J., 1975. Water Content of a Granite Magma Deduced from the Sequence of Crystallization Determined Experimentally with Water-Undersaturated Conditions. Contributions to Mineralogy and Petrology, 52(3): 175–191. https://doi.org/10.1007/bf00457293

    Article  Google Scholar 

  • Middlemost, E. A. K., 1985. Magmas and Magmatic Rocks. Logman, London. 87–88

    Google Scholar 

  • Miller, C. F., Furbish, D. J., Walker, B. A., et al., 2011. Growth of Plutons by Incremental Emplacement of Sheets in Crystal-Rich Host: Evidence from Miocene Intrusions of the Colorado River Region, Nevada, USA. Tectonophysics, 500(1): 65–77. https://doi.org/10.1016/j.tecto.2009.07.011

    Article  Google Scholar 

  • Mills, R. D., Glazner, A. F., 2013. Experimental Study on the Effects of Temperature Cycling on Coarsening of Plagioclase and Olivine in an Alkali Basalt. Contributions to Mineralogy and Petrology, 166(1): 97–111. https://doi.org/10.1007/s00410-013-0867-4

    Article  Google Scholar 

  • Moreira, H., Seixas, L., Storey, C., et al., 2018. Evolution of Siderian Juvenile Crust to Rhyacian High Ba-Sr Magmatism in the Mineiro Belt, Southern São Francisco Craton. Geoscience Frontiers, 9(4): 977–995. https://doi.org/10.1016/j.gsf.2018.01.009

    Article  Google Scholar 

  • Moyen, J.-F., Laurent, O., 2018. Archaean Tectonic Systems: A View from Igneous Rocks. Lithos, 302/303: 99–125. https://doi.org/10.1016/j.lithos.2017.11.038

    Article  Google Scholar 

  • Nakamura, N., 1974. Determination of REE, Ba, Fe, Mg, Na and K in Carbonaceous and Ordinary Chondrites. Geochimica et Cosmochimica Acta, 38(5): 757–775. https://doi.org/10.1016/0016-7037(74)90149-5

    Article  Google Scholar 

  • Noce, C. M., Pedrosa-Soares, A. C., Silva, L. C., et al., 2007. Evolution of Polycyclic Basement Complexes in the Araçuaí orogen, Based on U-Pb SHRIMP Data: Implication of Brazil-Africa Links in Paleoproterozoic Time. Precambrian Research, 159(1/2): 60–78. https://doi.org/10.1016/j.precamres.2007.06.001

    Article  Google Scholar 

  • Nockolds, S. R., 1947. The Relation between Chemical Composition and Paragenesis in the Biotite Micas of Igneous Rocks. American Journal of Science, 245: 401–420. https://doi.org/10.2475/ajs.245.7.401

    Article  Google Scholar 

  • Patiño Douce, A. E., Beard, J. S., 1995. Dehydration Melting of Biotite Gneiss and Quartz Amphibolite from 3 to 15 kbar. Journal of Petrology, 36(3): 707–738. https://doi.org/10.1093/petrology/36.3.707

    Article  Google Scholar 

  • Patiño Douce, A. E., McCarthy, T. C., 1998. Melting of Continental Rocks During Continental Collision and Subduction. In: Hacker, B., Liou, J. G., eds., When Continents Collides: Geodynamics and Geochemistry of Ultra-High Pressure Rocks. Kluwer Academic Publisher, Dordrecht. 27–55

    Chapter  Google Scholar 

  • Pearce J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Elements Discrimination Diagrams for the Tectonic Interpretation of Granite Rocks. Journal of Petrology, 25(4): 956–983. https://doi.org/10.1093/petrology/25.4.956

    Article  Google Scholar 

  • Pearce, J., 1996. Sources and Settings of Granitic Rocks. Episodes, 19(4): 120–125

    Article  Google Scholar 

  • Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63–81. https://doi.org/10.1007/bf00384745

    Article  Google Scholar 

  • Petronilho, L. A., 2009. O Método Sm-Nd no CPGeo-IGc-USP: Procedimentos Analíticos Atualmente em Rotina. Simpósio 45 anos de Geocronologia no Brasil, Instituto de Geociências, USP. Boletim de Resumos Expandidos, São Paulo. 116–2118 (in Portuguese)

  • Pimentel, M. M., Charnley, N., 1991. Intracrustal REE Fractionation and Implications for SMND Model Age Calculations in Late-Stage Granitic Rocks: An Example from Central Brazil. Chemical Geology: Isotope Geoscience Section, 86(2): 123–138. https://doi.org/10.1016/0168-9622(91)90058-5

    Google Scholar 

  • Ribeiro, A., Teixeira, W., Dussin, I. A., et al., 2013. U-Pb LA-ICP-MS Detrital Zircon Ages of the São João del Rei and Carandaí Basins: New Evidence of Intermittent Proterozoic Rifting in the São Francisco Paleocontinent. Gondwana Research, 24(2): 713–726. https://doi.org/10.1016/j.gr.2012.12.016

    Article  Google Scholar 

  • Roberts, M. P., Clemens, J. D., 1993. Origin of High-Potassium, Talc-Alkaline, I-Type Granitoids. Geology, 21(9): 825–828. https://doi.org/10.1130/0091-7613(1993)021<0825:oohpta>2.3.co;2

    Article  Google Scholar 

  • Sato, K., Tassinari, C. C. G., Kawashita, K., et al., 1995. O Método Geocronológico Sm-Nd no IG/USP e Suas Aplicações. Anais da Academia Brasileira de Ciências, 67: 313–336

    Google Scholar 

  • Sato, K., Basei, M. A. S., Siga Junior, O., et al., 2010. In situ U-Th-Pb Isotopic Analyses by Excimer Laser Ablation/ICP-MS on Brazilian Megacrystal Xenotime: First Results on U-Pb Isoptes at CPGeo-IGC-USP. VII SSAGI-South American Simposium on Isotope Geology, Brasília. 349–352

  • Sato, K., Tassinari, C. C. G., Basei, M. A. S., et al., 2014. Sensitive High Resolution Ion Microprobe (SHRIMP IIe/MC) of the Institute of Geosciences of the University of São Paulo, Brazil: Analytical Method and First Results. Geologia USP, Série Científica, 14(3): 3–18

    Article  Google Scholar 

  • Sawyer, E. W., Cesare, B., Brown, M., 2011. When the Continental Crust Melts. Elements, 7(4): 229–234. https://doi.org/10.2113/gselements.7.4.229

    Article  Google Scholar 

  • Seixas, L. A. R., David, J., Stevenson, R., 2012. Geochemistry, Nd Isotopes and U-Pb Geochronology of a 2 350 Ma TTG Suite, Minas Gerais, Brazil: Implications for the Crustal Evolution of the Southern São Francisco Craton. Precambrian Research, 196/197: 61–80. https://doi.org/10.1016/j.precamres.2011.11.002

    Article  Google Scholar 

  • Seixas, L. A. R., Bardintzeff, J. M., Stevenson, R., et al., 2013. Petrology of the High-Mg Tonalites and Dioritic Enclaves of the ca. 2 130 Ma Alto Maranhão Suite: Evidence for a Major Juvenile Crustal Addition Event during the Rhyacian Orogenesis, Mineiro Belt, Southeast Brazil. Precambrian Research, 238: 18–41. https://doi.org/10.1016/j.precamres.2013.09.015

    Article  Google Scholar 

  • Silva, M. M., Holtz, F., Namur, O., 2017. Crystallization Experiments in Rhyolitic Systems: The Effect of Temperature Cycling and Starting Material on Crystal Size Distribution. American Mineralogist, 102(11): 2284–2294. https://doi.org/10.2138/am-2017-5981

    Article  Google Scholar 

  • Silva, M. M., Ávila, C. A., Barbosa, N. S., et al., 2020. Caracterização do Ortognaisse Brejo Alegre e sua Inserção no Contexto Evolutivo do Cinturão Mineiro, Cráton do São Francisco. Anuário do Instituto de Geociências—UFRJ, 43(2): 252–269 (in Portuguese with English Abstract)

    Google Scholar 

  • Stacey, J. S., Kramers, J. D., 1975. Approximation of Terrestrial Lead Isotope Evolutionby a Two Stage Model. Earth and Planetary Science Letters, 26(2): 207–221. https://doi.org/10.1016/0012-821x(75)90088-6

    Article  Google Scholar 

  • Teixeira, W., Ávila, C. A., Nunes, L. C., 2008. Nd-Sr Isotopic Geochemistry and Geochronology of the Fé Granitic Gneiss and Lajedo Granodirite: Implications for Paleoproterozoic Evolution of the Mineiro Belt, Southern São Francisco Craton, Brazil. Revista do Instituto de Geociências, 8: 53–74

    Google Scholar 

  • Teixeira, W., Ávila, C. A., Dussin, I. A., et al., 2015. A Juvenile Accretion Episode (2.35–2.32 Ga) in the Mineiro Belt and Its Role to the Minas Accretionary Orogeny: Zircon U-Pb-Hf and Geochemical Evidences. Precambrian Research, 256(4): 148–169. https://doi.org/10.1016/j.precamres.2014.11.009

    Article  Google Scholar 

  • Thompson, A. B., Connolly, J. A. D., 1995. Melting of the Continental Crust: Some Thermal and Petrological Constraints on Anatexis in Continental Collision Zones and Other Tectonic Settings. Journal of Geophysical Research, 100(B8): 15565–15579. https://doi.org/10.1029/95jb00191

    Article  Google Scholar 

  • Tuttle, O. F., Bowen, N. L., 1958. Origin of Granite in the Light of Experimental Studies in the System NaAlSi3O8-KA1Si3O8-SiO2-H2O. Geological Society of America Memoir, 74: 1–154. https://doi.org/10.1130/mem74

    Article  Google Scholar 

  • Vasconcelos, F. F., Ávila, C. A., Neumann, R., et al., 2017. Ortognaisse Morro do Resende: Mineralogia, Petrografia, Geoquímica e Geocronologia. Geologia USP. Série Científica, 17: 143–164

    Article  Google Scholar 

  • Vernon, R. H., Paterson, S. R., 2008. How Late are K-Feldspar Megacrysts in Granites? Lithos, 104(1–4): 327–336. https://doi.org/10.1016/j.lithos.2008.01.001

    Article  Google Scholar 

  • Villaseca, C., Barbero, L., Herreros, V., 1998. A Re-Examination of the Typology of Peraluminous Granite Types in Intracontinental Orogenic Belts. Transactions of the Royal Society of Edinburgh, Earth Sciences, 89(2): 113–119. https://doi.org/10.1017/s0263593300007045

    Article  Google Scholar 

  • Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth Planetary Science Letters, 64(3): 295–304. https://doi.org/10.1016/0012-821x(83)90211-x

    Article  Google Scholar 

  • Weaver, B. L., Tarney, J., 1984. Empirical Approach to Estimating the Composition of the Continental Crust. Nature, 310(5978): 575–577. https://doi.org/10.1038/310575a0

    Article  Google Scholar 

  • Weinberg, R. F., Hasalová, P., 2015. Water-Fluxed Melting of the Continental Crust: A Review. Lithos, 212–215: 158–188. https://doi.org/10.1016/j.lithos.2014.08.021

    Article  Google Scholar 

  • Whitney, J. A., 1988. The Origin of Granite: The Role and Source of Water in the Evolution of Granitic Magmas. Geological Society of America Bulletin, 100(12): 1886–1897. https://doi.org/10.1130/0016-7606(1988)100<1886:toogtr>2.3.co;2

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. Valdecir Janasi for the helpful comments. The manuscript also benefitted from comments and reviews from Tapani Rämö and an anonymous reviewer. Marize M. da Silva thanks the support of the CAPES and the Brazilian National Research Council (CNPq) for the Doctoral (No. 140411/2013-5). Ciro A. Ávila and Wilson Teixeira acknowledge CNPq and FAPERJ for providing continued support for the research in the Mineiro belt. The final publication is available at Springer via https://doi.org/10.1007/s12583-021-1469-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marize M. da Silva.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, M.M., Ávila, C.A., Tavares, F.M. et al. Genesis of the Gentio Metagranitoid: Post-Collisional High-K Plutonism within the Mineiro Belt, São Francisco Craton, Brazil. J. Earth Sci. 32, 1374–1396 (2021). https://doi.org/10.1007/s12583-021-1469-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-021-1469-0

Key words

Navigation