Skip to main content
Log in

Hemato-Immunological Responses and Disease Resistance in Siberian Sturgeon Acipenser baerii Fed on a Supplemented Diet of Lactobacillus plantarum

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

A feeding trial was conducted to investigate the effects of different levels of dietary Lactobacillus plantarum on hemato-immunological parameters and resistance against Streptococcus iniae infection in juvenile Siberian sturgeon Acipenser baerii. Fish (14.6 ± 2.3 g) were fed three experimental diets prepared by supplementing a basal diet with L. plantarum at different concentrations [1 × 107, 1 × 108 and 1 × 109 colony-forming units (cfu) g−1] and a control (non-supplemented basal) diet for 8 weeks. Innate immune responses (immunoglobulin (Ig), alternative complement activity (ACH50) and lysozyme activity) were significantly higher in fish fed the 1 × 108 and 1 × 109 cfu g−1 L. plantarum diet compared to the other groups (P < 0.05). Furthermore, fish fed on various levels of L. plantarum significantly showed higher red blood cell (RBC), hemoglobin (Hb), white blood cell (WBC) and monocyte compared to those of the control group (P < 0.05). At the end of the feeding experiment, some fish were challenged with S. iniae to quantify the level of disease resistance. The mortality after S. iniae challenge was decreased in fish fed a probiotic. These results indicated that dietary supplementation of L. plantarum improved immune response and disease resistance of Siberian sturgeon juvenile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nomoto K (2005) Prevention of infections by probiotics. J Biosci Bioeng 100:583–592

    Article  CAS  Google Scholar 

  2. Geraylou Z, Souffreau C, Rurangwa E, De Meester L, Courtin CM, Delcour JA et al (2013) Effects of dietary arabinoxylan-oligosaccharides (AXOS) and endogenous probiotics on the growth performance, non-specific immunity and gut microbiota of juvenile Siberian sturgeon (Acipenser baerii). Fish Shellfish Immunol 35:766–775

    Article  CAS  Google Scholar 

  3. Verschuere L, Rombaut G, Sorgeloos P, Verstraete W (2000) Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev 64:655–671

    Article  CAS  Google Scholar 

  4. Gatesoupe FJ (1999) The use of probiotics in aquaculture. Aquaculture 180:147–165

    Article  Google Scholar 

  5. Irianto A, Austin B (2002) Probiotics in aquaculture. J Fish Dis 25:633–642

    Article  Google Scholar 

  6. Talpur AD, Ikhwanuddin M, Abdullah MDD, Bolong AA (2013) Indigenous Lactobacillus plantarum as probiotic for larviculture of blue swimming crab, Portunus pelagicus (Linnaeus, 1758): effects on survival, digestive enzyme activities and water quality. Aquaculture 416–417:173–178

    Article  Google Scholar 

  7. Kongnum K, Hongpattarakere T (2012) Effect of Lactobacillus plantarum isolated from digestive tract of wild shrimp on growth and survival of white shrimp (Litopenaeus vannamei) challenged with Vibrio harveyi. Fish Shellfish Immunol 32:170–177

    Article  Google Scholar 

  8. Giri SS, Sukumaran V, Oviya M (2013) Potential probiotic Lactobacillus plantarum VSG3 improves the growth, immunity, and disease resistance of tropical freshwater fish, Labeo rohita. Fish Shellfish Immunol 34(2):660–666

    Article  CAS  Google Scholar 

  9. Vieira FN, Buglione CC, Mourino JPL, Jatoba A, Martins ML, Schleder DD et al (2010) Effect of probiotic supplemented diet on marine shrimp survival after challenge with Vibrio harveyi. Arq Bras Med Vet Zootec 62(3):631–638

    Article  Google Scholar 

  10. Carnevali O, Zamponi MC, Sulpizio R, Rollo A, Nardi M, Orpianesi C et al (2004) Administration of probiotic strain to improve sea bream wellness during development. Aquac Int 12(4–5):377–386

    Article  Google Scholar 

  11. Chiu CH, Guu YK, Liu CH, Pan TM, Cheng W (2007) Immune responses and gene expression in white shrimp, Litopenaeus vannamei, induced by Lactobacillus plantarum. Fish Shellfish Immunol 23:364–377

    Article  CAS  Google Scholar 

  12. Iman MKA, Wafaa TA, Elham SA, Mohammad MNA, Kawther E, Osama MS et al (2013) Evaluation of Lactobacillus plantarum as a probiotic in aquaculture: emphasis on growth performance and innate immunity. J Appl Sci Res 9(1):572–582

    Google Scholar 

  13. Son VM, Chang CC, Wu MC, Guu YK, Chiu CH, Cheng W (2009) Dietary administration of the probiotic, Lactobacillus plantarum, enhanced the growth, innate immune responses, and disease resistance of the grouper Epinephelus coioides. Fish Shellfish Immunol 26:691–698

    Article  CAS  Google Scholar 

  14. Iwashita MKP, Nakandakare IB, Terhune JS, Wood T, Ranzani-Paiva MJT (2015) Dietary supplementation with Bacillus subtilis, Saccharomyces cerevisiae and Aspergillus oryzae enhance immunity and disease resistance against Aeromonas hydrophila and Streptococcus iniae infection in juvenile tilapia Oreochromis niloticus. Fish Shellfish Immunol 43:60–66

    Article  CAS  Google Scholar 

  15. Kim D, Beck BR, Saet Byeol Heo, Kim J, Kim HD, Lee SM et al (2013) Lactococcus lactis BFE920 activates the innate immune system of olive flounder (Paralichthys olivaceus), resulting in protection against Streptococcus iniae infection and enhancing feed efficiency and weight gain in large-scale field studies. Fish Shellfish Immunol 35:1585–1590

    Article  CAS  Google Scholar 

  16. Dawood MAO, Koshio S, Ishikawa M, Yokoyama S (2015) Interaction effects of dietary supplementation of heat-killed Lactobacillus plantarum and β-glucan on growth performance, digestibility and immune response of juvenile red sea bream, Pagrus major. Fish Shellfish Immunol 45(1):33–42

    Article  CAS  Google Scholar 

  17. Geraylou Z, Vanhove MPM, Souffreau C, Rurangwa E, Buyse J, Ollevier F (2014) In vitro selection and characterization of putative probiotics isolated from the gut of Acipenser baerii (Brandt, 1869). Aquac Res 45:341–352

    Article  Google Scholar 

  18. Pourghanbar Moghadam N, Issazadeh K, Mirpour M (2014) In vitro antagonistic effects of Lactobacillus acidophilus PTCC 1643 (DSM 20079) and Lactobacillus plantarum PTCC, 1058 (ATCC 8014) against isolated bacteria from urinary tract infections. Int J Mol Clin Microbiol 1:377–382

    Google Scholar 

  19. Martins ML, Tavares-Dias M, Fujimoto RY, Onaka EM (2004) Nomura DT Haematological alterations of Leporinus macrocephalus (Osteichtyes: Anostomidae) naturally infected by Goezia leporini (Nematoda: Anisakidae) in fishponds. Arq Bras Med Vet Zootec 56:640–646

    Article  Google Scholar 

  20. Collier HB (1994) The standardization of blood hemoglobin determinations. Can Med Assoc J 50:550–552

    Google Scholar 

  21. Ghiasi F, Mirzargar SS, Badakhshan H, Shamsi S (2010) Effects of low concentration of cadmium on the level of lysozyme in serum, leukocyte count and phagocytic index in Cyprinus carpio under the wintering conditions. J Fish Aquat Sci 5:113–119

    Article  CAS  Google Scholar 

  22. Seiverd CE (1964) Hematology for medical technologists. Lea and Febiger, Philadelphia, p 946

    Google Scholar 

  23. Siwicki AK, Anderson DP (1993) Nonspecific defense mechanisms assay in fish: II. Potential killing activity of neutrophils and macrophages, lysozyme activity in serum and organs and total immunoglobulin level in serum. Fish Dis Diagn Prev Methods 105–112. Olsztyn, Poland

  24. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  25. Ellis TA (1990) Lysozyme assays. In: Stolen JS, Fletcher TC, Anderson DP, Roberson BS, Van Muiswinkel WB (eds) Techniques in fish immunology. SOS Publications, Fair Haven, pp 101–103

    Google Scholar 

  26. Sunyer J, Tort L (1995) Natural hemolytic and bactericidal activities of sea bream Sparus aurata serum are affected by the alternative complement pathway. Vet Immunol Immunopathol 45(3):333–345

    Article  CAS  Google Scholar 

  27. Brunt J, Newaj-Fyzul A, Austin B (2007) The development of probiotics for the control of multiple bacterial diseases of rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 30:573–579

    Article  CAS  Google Scholar 

  28. Tewary A (2011) Patra B Oral administration of baker’s yeast (Saccharomyces cerevisiae) acts as a growth promoter and immunomodulator in Labeo rohita (Ham.). J Aquac Res Dev 2:1–7

    Article  Google Scholar 

  29. Faramazi M, Kiaalvandi S, Lashkarbolooki M, Iranshahi F (2011) The investigations of Lactobacillus acidophilis as probiotics on grown performance and disease resistance of rainbow trout (Oncorhynchus mykiss). Am Eurasian J Sci Res 6(1):32–38

    Google Scholar 

  30. Dias DC, Leonardo AFG, Tachibana L, Correa CF, Bordon CAC, Romagosa E, Ranzani-Paiva MJT (2012) Effect of incorporating probiotics into the diet of matrinxa (Brycon amazonicus) breeders. J Appl Ichthyol 28:40–45

    Article  CAS  Google Scholar 

  31. Dahiya T, Sihag RC, Gahlawat SK (2012) Effect of probiotics on the haematological parameters of Indian Magur (Clarius batrachus L.). J Fish Aqua Sci 7:279–290

    Article  CAS  Google Scholar 

  32. Ayoola SO, Ajani EK, Fashae OF (2013) Effect of probiotics (Lactobacillus and Bifidobacterium) on growth performance and hematological profile of Clarias gariepinus juveniles. World J Fish Mar Sci 5:01–08

    Google Scholar 

  33. Naseri S, Khara H, Shakoori M (2015) Evaluation of Bacillus licheniformis and Bacillus subtilis as probiotic and Fe ion effects on haematological parameters of rainbow trout, Oncorhynchus mykiss frys. Comp Clin Pathol 24(6):1521–1526

    Article  CAS  Google Scholar 

  34. Azarin H, Aramli MS, Imanpour MR, Rajabpour M (2015) Effect of a probiotic containing Bacillus licheniformis and Bacillus subtilis and ferroin solution on growth performance, body composition and haematological parameters in Kutum (Rutilus frisii kutum) Fry. Probiots Antimicro. Prot 7:31–37

    Article  CAS  Google Scholar 

  35. Staykov Y, Spring P, Denev S, Sweetman J (2007) Effect of a mannan oligosaccharide on the growth performance and immune status of rainbow trout (Oncorhynchus mykiss). Aquac Int 15:153–161

    Article  CAS  Google Scholar 

  36. Kim DH, Austin B (2006) Innate immune responses in rainbow trout (Oncorhynchus mykiss, Walbaum) induced by probiotics. Fish Shellfish Immunol 21:513–524

    Article  CAS  Google Scholar 

  37. Panigrahi A, Kiron V, Kobayashi T, Puangkaew J, Satoh S, Sugita H (2004) Immune responses in rainbow trout Oncorhynchus mykiss induced by a potential probiotic bacteria Lactobacillus rhamnosus JCM 1136. Vet Immunol Immunopathol 102:379–388

    Article  CAS  Google Scholar 

  38. Balcazar JL, de Blas I, Ruiz-Zarzuela I, Vendrell D, Calvo AC, Marquez I et al (2007) Changes in intestinal microbiota and humoral immune response following probiotic administration in brown trout (Salmo trutta). Br J Nutr 97:522–527

    Article  CAS  Google Scholar 

  39. Nayak SK (2010) Probiotics and immunity: a fish perspective. Fish Shellfish Immunol 29:2–14

    Article  CAS  Google Scholar 

  40. Akrami R, Iri Y, Rostami HK, Mansour MR (2013) Effect of dietary supplementation of fructooligosacharide (FOS) on growth performance, survival, Lactobacillus bacterial population and hemato-immunological parameters of stellate sturgeon (Acipenser stellatus) juvenile. Fish Shellfish Immunol 35:1235–1239

    Article  CAS  Google Scholar 

  41. Sakai M (1999) Current research status of fish immostimulants. Aquaculture 172:63–92

    Article  CAS  Google Scholar 

  42. Aly SM, Ahmed YA, Aziz AAG, Mohamed MF (2008) Studies on Bacillus subtilis and Lactobacillus acidophilus, as potential probiotics, on the immune response and resistance of Tilapia nilotica (Oreochromis niloticus) to challenge infections. Fish Shellfish Immunol 25:128–136

    Article  CAS  Google Scholar 

  43. Perez-Sanchez T, Balcázar JL, Merrifield DL, Carnevali O, Gioacchini G, Blas I et al (2011) Expression of immune-related genes in rainbow trout (Oncorhynchus mykiss) induced by probiotic bacteria during Lactococcus garvieae infection. Fish Shellfish Immunol 31:196–211

    Article  CAS  Google Scholar 

  44. Ellis AE (1999) Immunity to bacteria in fish. Fish Shellfish Immunol 9:291–308

    Article  Google Scholar 

  45. Cerezuela R, Guardiola FA, González P, Meseguer J, Esteban MA (2012) Effects of dietary Bacillus subtilis, Tetraselmis chuii, and Phaeodactylum tricornutum, singularly or in combination, on the immune response and disease resistance of sea bream (Sparus aurata L.). Fish Shellfish Immunol 33:342–349

    Article  Google Scholar 

  46. Salton MRJ, Ghuysen JM (1959) The structure of di- and tetra-saccharides released from cell walls by lysozyme and Streptomyces F1 enzyme and the β(1-4) Nacetylhexosaminidase activity of these enzymes. Biochim Biophys Acta 36:552–554

    Article  CAS  Google Scholar 

  47. Glynn AA (1969) The complement lysozyme sequence in immune bacteriolysis. Immunology 16:463–471

    CAS  Google Scholar 

  48. Hjelmeland K, Christie M, Raa J (1983) Skin mucus protease from rainbow trout, Salmo gairdneri Richardson, and its biological significance. J Fish Biol 23:13–22

    Article  CAS  Google Scholar 

  49. Klockar M, Roberts P (1976) Stimulation of phagocytosis by human lysozyme. Acta Haematol 55:289–295

    Article  Google Scholar 

  50. Jolle SP, Jolle SJ (1984) What’s new in lysozyme research? always a model system, today as yesterday. Mol Cell Biochem 63:165–189

    Google Scholar 

  51. Liu CH, Chiu CH, Wang SW, Cheng W (2012) Dietary administration of the probiotic, Bacillus subtilis E20, enhaces the growth, innate immune responses, and disease resistance of the grouper, Epinephelus coioides. Fish Shellfish Immunol 33:699–706

    Article  CAS  Google Scholar 

  52. Aly SM, Mohamed MF, John G (2008) Effect of probiotics on the survival, growth and challenge infection in Tilapia nilotica (Oreochromis niloticus). Aquac Res 39:647–656

    Article  CAS  Google Scholar 

  53. Chiu CH, Cheng CH, Gua WR, Guu YK, Cheng W (2010) Dietary administration of the probiotic Saccharomyces cerevisiae P13 enhanced the growth, innate immune responses, and disease resistance of the grouper, Epinephelus coioides. Fish Shellfish Immunol 29:1053–1059

    Article  CAS  Google Scholar 

  54. Merrifield D, Balcázar J, Daniels C, Zhou Z, Carnevali O, Sun Y et al (2014) In: Ringø E, Merrifield DL (eds) Aquaculture nutrition: gut health, probiotics and prebiotics. Wiley-Blackwell Scientific Publication, London

  55. Sharifuzzaman SM, Austin B (2009) Influence of probiotic feeding duration on disease resistance and immune parameters in rainbow trout. Fish Shellfish Immunol 27:440–445

    Article  CAS  Google Scholar 

  56. Hoa NT, Baccigalupi L, Huxham A (2000) Characterization of Bacillus species used for oral bacteriotherapy and bacterioprophylaxis of gastrointestinal disorders. Appl Environ Microbiol 66:5241–5247

    Article  CAS  Google Scholar 

  57. Dash G, Prakash Raman R, Pani Prasad K, Makesh M, Pradeep MA, Sen S (2015) Evaluation of paraprobiotic applicability of Lactobacillus plantarumin improving the immune response and disease protection in giant freshwater prawn, Macrobrachium rosenbergii (de Man, 1879). Fish Shellfish Immunol 43:167–174

    Article  CAS  Google Scholar 

  58. Pandiyan P, Balaraman D, Thirunavukkarasu R, George EGJ, Subaramaniyan K, Manikkam S et al (2013) Probiotics in aquaculture. Drug Invention Today 5(1):55–59

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Sadegh Aramli.

Ethics declarations

Conflict of interest

Moheb Ali Pourgholam, Hossein Khara, Reza Safari, Mohammad Ali Yazdani Sadati and Mohammad Sadegh Aramli declares that they have no conflict of interest.

Ethical Approval

All fish manipulations were conducted in accordance with the guidelines on the care and use of animals for scientific purposes (National Health and Medical Research Council, Australia).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourgholam, M.A., Khara, H., Safari, R. et al. Hemato-Immunological Responses and Disease Resistance in Siberian Sturgeon Acipenser baerii Fed on a Supplemented Diet of Lactobacillus plantarum . Probiotics & Antimicro. Prot. 9, 32–40 (2017). https://doi.org/10.1007/s12602-016-9229-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-016-9229-7

Keywords

Navigation