Skip to main content
Log in

Enhancement of Au–Ag–Te contents in tellurium-bearing ore minerals via bioleaching

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The purpose of this study was to enhance the content of valuable metals, such as Au, Ag, and Te, in tellurium-bearing minerals via bioleaching. The ore samples composed of invisible Au and Au paragenesis minerals (such as pyrite, chalcopyrite, sphalerite and galena) in combination with tellurium-bearing minerals (hessite, sylvanite and Tellurobismuthite) were studied. Indigenous microbes from mine drainage were isolated and identified as Acidithiobacillus ferrooxidans, which were used in bioleaching after adaption to copper. The effect of the microbial adaption on the bioleaching performance was then compared with the results produced by the non-adaptive process. The microbial adaption enhanced the Au–Ag–Te contents in biological leaching of tellurium-bearing ore minerals. This suggests that bioleaching with adapted microbes can be used both as a pretreatment and in the main recovery processes of valuable metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Climo, H.R. Watling, and W. Van Bronswijk, Biooxidation as pre-treatment for a telluride-rich refractory gold concentrate, Miner. Eng., 13(2000), No. 12, p. 1219.

    Article  Google Scholar 

  2. P. Fulignati and A. Sbrana, Presence of native gold and tellurium in the active high-sulfidation hydrothermal system of the La Fossa volcano (Vulcano, Italy), J. Volcanol. Geotherm. Res., 86(1998), No. 1-4, p. 187.

    Article  Google Scholar 

  3. P.G. Spry and S.E. Thieben, Two new occurrences of benleonardite, a rare silver-tellurium sulphosalt, and a possible new occurrence of cervelleite, Mineral. Mag., 60(1996), No. 1, p. 871.

    Article  Google Scholar 

  4. P. Voudouris, M. Tarkian, and K. Arikas, Mineralogy of telluride-bearing epithermal ores in the Kassiteres-Sappes area, western Thrace, Greece, Mineral. Petrol., 87(2006), No. 1-2, p. 31.

    Article  Google Scholar 

  5. D.W. Pals and P.G. Spry, Telluride mineralogy of the low-sulfidation epithermal Emperor gold deposit, Vatukoula, Fiji, Mineral. Petrol., 79(2003), No. 3, p. 285.

    Article  Google Scholar 

  6. K. Bosecker, Bioleaching: metal solubilization by microorganisms, FEMS Microbiol. Rev., 20(1997), No. 3-4, p. 591.

    Article  Google Scholar 

  7. C.H. Hus and R.G. Harrison, Bacterial leaching of zinc and copper from mining waste, Hydrometallurgy, 37(1995), No. 2, p. 169.

    Article  Google Scholar 

  8. N.F. Lei and H.G. Xie, Bioleaching of low grade tellurium sulfide mineral, Energy Procedia, 16(2012), p. 946.

    Article  Google Scholar 

  9. K. Bosecker, A.E. Torma, and J.A. Brierley, Microbiological leaching of a chalcopyrite concentrate and the influence of hydrostatic pressure on the activity of Thiobacillus ferrooxidans, Eur. J. Appl. Microbiol. Biotechnol., 7(1979), No. 1, p. 85.

    Article  Google Scholar 

  10. José A. Rojas-Chapana and H. Tributsch, Interfacial activity and leaching patterns of Leptospirillum ferrooxidans on pyrite, FEMS Microbiol. Ecol., 47(2004), No. 1, p. 19.

    Article  Google Scholar 

  11. L.X. Xia, X.X. Liu, J. Zeng, C. Yin, J. Gao, J.S. Liu, and G.Z. Qiu, Mechanism of enhanced bioleaching efficiency of Acidithiobacillus ferrooxidans after adaptation with chalcopyrite, Hydrometallurgy, 92(2008), No. 3-4, p. 95.

    Article  Google Scholar 

  12. F. Vegliò, M. Trifoni, F. Pagnanelli, and L. Toro, Shrinking core model with variable activation energy: a kinetic model of manganiferous ore leaching with sulphuric acid and lactose, Hydrometallurgy, 60(2001), No. 2, p. 167.

    Article  Google Scholar 

  13. H. Tan, D. Feng, G.C. Lukey, and J.S.J. van Deventer, The behaviour of carbonaceous matter in cyanide leaching of gold, Hydrometallurgy, 78(2005), No. 3-4, p. 226.

    Article  Google Scholar 

  14. N.J. Cook and C.L. Ciobanu, Bismuth tellurides and sulphosalts from the Larga hydrothermal system, Metaliferi Mts, Romania: Paragenesis and genetic significance, Miner. Mag., 68(2004), No. 2, p. 301.

    Article  Google Scholar 

  15. V.A. Kovalenker and O.Y. Plotinskaya, Te and Se mineralogy of Ozernovskoe and Prasolovskoe epithermal gold deposits, Kuril–Kamchatka volcanic belt, Geochim. Mineral. Petrol., 43(2005), No. 14-19, p. 118.

    Google Scholar 

  16. R.K. Amankwah, A.U. Khan, C.A. Pickles, and W.T. Yen, Improved grindability and gold liberation by microwave pretreatment of a free-milling gold ore, Trans. Inst. Min. Metall. Sect. C, 114(2005), No. 1, p. 30.

    Google Scholar 

  17. P. Bhakta and B. Arthur, Heap bio-oxidation and gold recovery at newmont mining: First-year results, JOM, 54(2002), No. 10, p. 31.

    Article  Google Scholar 

  18. E.B. Lindström, E. Gunneriusson, and O.H. Tuovinen, Bacterial oxidation of refractory sulfide ores for gold recovery, Crit. Rev. Biotechnol., 12(1992), No. 1-2, p. 133.

    Article  Google Scholar 

  19. A.B. Jensen and C. Webb, Ferrous sulfate oxidation using thiobacillus-ferrooxidans: a review, Process Biochem., 30(1995), No. 3, p. 225.

    Article  Google Scholar 

  20. Y.A. Attia and M.A. Elzeky, Bioleaching of non-ferrous sulfides with adapted thiophillic bacteria, Chem. Eng. J., 44(1990), No. 2, p. B31.

    Article  Google Scholar 

  21. S.M. Mousavi, S. Yaghmaei, M. Vossoughi, A. Jafari, R. Roostaazad, and I. Turunen, Bacterial leaching of low-grade ZnS concentrate using indigenous mesophilic and thermophilic strains, Hydrometallurgy, 85(2007), No. 1, p. 59.

    Article  Google Scholar 

  22. A. Pinches, F.O. Al-Jaid, D.J.A. Williams, and B. Atkinson, Leaching of chalcopyrite concentrates with thiobacillus ferrooxidans in batch culture, Hydrometallurgy, 2(1976), No. 2, p. 87.

    Article  Google Scholar 

  23. D.F. Haghshenas, E.K. Alamdari, M.A. Torkmahalleh, B. Bonakdarpour, and B. Nasernejad, Adaptation of Acidithiobacillus ferrooxidans to high grade sphalerite concentrate, Miner. Eng., 22(2009), No. 15, p. 1299.

    Article  Google Scholar 

  24. V. Sanmugasunderam, R. Branion, and D. Duncan, A growth model for the continuous microbiological leaching of a zinc sulfide concentrate by Thiobacillus ferrooxidans, Biotechnol. Bioeng., 27(1985), No. 8, p. 1173.

    Article  Google Scholar 

  25. S.Y. Shi and Z.H. Fang, Bioleaching of marmatite flotation concentrate by adapted mixed mesoacidophilic cultures in an air-lift reactor, Int. J. Miner. Process., 76(2005), No. 1-2, p. 3.

    Article  Google Scholar 

  26. D.E. Rawlings, Heavy metal mining using microbes, Annu. Rev. Microbiol., 56(2002), No. 1, p. 65.

    Article  Google Scholar 

  27. L. Keller and L.E. Murr, Acid-bacterial and ferric sulfate leaching of pyrite single-crystals, Biotechnol. Bioeng., 24(1982), No. 1, p. 83.

    Article  Google Scholar 

  28. Z. Zhu, W. Zhang, Y. Pranolo, and C.Y. Cheng, Separation and recovery of copper, nickel, cobalt and zinc in chloride solutions by synergistic solvent extraction, Hydrometallurgy, 127-128(2012), p. 1.

    Article  Google Scholar 

Download references

Acknowledgement

This project was supported by Chosun University (2012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soonjae Lee or Cheon Young Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, NC., Cho, K.H., Kim, B.J. et al. Enhancement of Au–Ag–Te contents in tellurium-bearing ore minerals via bioleaching. Int J Miner Metall Mater 25, 262–270 (2018). https://doi.org/10.1007/s12613-018-1569-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-018-1569-8

Keywords

Navigation