Skip to main content

Advertisement

Log in

Hydrogen as a carrier of renewable energies toward carbon neutrality: State-of-the-art and challenging issues

  • Invited Review
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Energy storage and conversion via a hydrogen chain is a recognized vision of future energy systems based on renewables and, therefore, a key to bridging the technological gap toward a net-zero CO2 emission society. This paper reviews the hydrogen technological chain in the framework of renewables, including water electrolysis, hydrogen storage, and fuel cell technologies. Water electrolysis is an energy conversion technology that can be scalable in megawatts and operational in a dynamic mode to match the intermittent generation of renewable power. Material concerns include a robust diaphragm for alkaline cells, catalysts and construction materials for proton exchange membrane (PEM) cells, and validation of the long-term durability for solid oxide cells. Hydrogen storage via compressed gas up to 70 MPa is optional for automobile applications. Fuel cells favor hydrogen fuel because of its superfast electrode kinetics. PEM fuel cells and solid oxide fuel cells are dominating technologies for automobile and stationary applications, respectively. Both technologies are at the threshold of their commercial markets with verified technical readiness and environmental merits; however, they still face restraints such as unavailable hydrogen fueling infrastructure, long-term durability, and costs to compete with the analog power technologies already on the market.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Intergovermental Panel on Climate Change (IPCC), Sixth Assessment Report, IPCC, Geneva, 2021 [2021-12-03]. https://www.ipcc.ch/assessment-report/ar6/

  2. T. Lockwood, A compararitive review of next-generation carbon capture technologies for coal-fired power plant, Energy Procedia, 114(2017), p. 2658.

    Article  CAS  Google Scholar 

  3. P. Millet and S. Grigoriev, Water electrolysis technologies, [in] L.M. Gandía, G. Arzamendi, and P.M. Diéguez, eds., Renewable Hydrogen Technologies: Production, Purification, Storage, Applications and Safety, Elsevier, Amsterdam, 2013, p. 19.

    Chapter  Google Scholar 

  4. J.J. Song, C. Wei, Z.F. Huang, C.T. Liu, L. Zeng, X. Wang, and Z.J. Xu, A review on fundamentals for designing oxygen evolution electrocatalysts, Chem. Soc. Rev., 49(2020), No. 7, p. 2196.

    Article  CAS  Google Scholar 

  5. M. Carmo, D.L. Fritz, J. Mergel, and D. Stolten, A comprehensive review on PEM water electrolysis, Int. J. Hydrogen Energy, 38(2013), No. 12, p. 4901.

    Article  CAS  Google Scholar 

  6. I. Vincent and D. Bessarabov, Low cost hydrogen production by anion exchange membrane electrolysis: A review, Renewable Sustainable Energy Rev., 81(2018), p. 1690.

    Article  CAS  Google Scholar 

  7. Q. Feng, X.Z. Yuan, G.Y. Liu, B. Wei, Z. Zhang, H. Li, and H.J. Wang, A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies, J. Power Sources, 366(2017), p. 33.

    Article  CAS  Google Scholar 

  8. L. Bertuccioli, A. Chan, D. Hart, F. Lehner, B. Madden, and E. Standen, Study on Development of Water Electrolysis in the EU, Fuel Cells and Hydrogen Joint Undertaking, 2014 [2021-05-10]. https://www.fch.europa.eu/sites/default/files/FCHJUElectrolysisStudy_FullReport%20(ID%20199214).pdf

  9. C.C. Yang, S.F. Zai, Y.T. Zhou, L. Du, and Q. Jiang, Fe3C-co nanoparticles encapsulated in a hierarchical structure of N-doped carbon as a multifunctional electrocatalyst for ORR, OER, and HER, Adv. Funct. Mater., 29(2019), No. 27, art. No. 1901949.

  10. X.X. Zou and Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting, Chem. Soc. Rev., 44(2015), No. 15, p. 5148.

    Article  CAS  Google Scholar 

  11. L.H. Liu, N. Li, J.R. Han, K.L. Yao, and H.Y. Liang, Multicomponent transition metal phosphide for oxygen evolution, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 503.

    Article  CAS  Google Scholar 

  12. M. Lehner, R. Tichler, H. Steinmüller, and M. Koppe, Power-to-Gas: Technology and Business Models, Springer, New York, 2014.

    Google Scholar 

  13. B. Decourt, B. Lajoie, R. Debarre, and O. Soupa, Hydrogen-based Energy Conversion. More than Storage: System Flexibility, SBC Energy Institute, Paris, 2014.

    Google Scholar 

  14. M.Y. Wang, Z. Wang, X.Z. Gong, and Z.C. Guo, The intensification technologies to water electrolysis for hydrogen production — A review, Renewable Sustainable Energy Rev., 29(2014), p. 573.

    Article  CAS  Google Scholar 

  15. M.R. Kraglund, D. Aili, K. Jankova, E. Christensen, Q.F. Li, and J.O. Jensen, Zero-gap alkaline water electrolysis using ion-solvating polymer electrolyte membranes at reduced KOH concentrations, J. Electrochem. Soc., 163(2016), No. 11, p. F3125.

    Article  CAS  Google Scholar 

  16. W.E. Mustain and P.A. Kohl, Improving alkaline ionomers, Nat. Energy, 5(2020), No. 5, p. 359.

    Article  CAS  Google Scholar 

  17. C.Q. Li and J.B. Baek, The promise of hydrogen production from alkaline anion exchange membrane electrolyzers, Nano Energy, 87(2021), art. No. 106162.

  18. U. Babic, M. Suermann, F.N. Büchi, L. Gubler, and T.J. Schmidt, Critical review—Identifying critical gaps for polymer electrolyte water electrolysis development, J. Electrochem. Soc., 164(2017), No. 4, p. F387.

    Article  CAS  Google Scholar 

  19. L.G. Li, P.T. Wang, Q. Shao, and X.Q. Huang, Metallic nanostructures with low dimensionality for electrochemical water splitting, Chem. Soc. Rev., 49(2020), No. 10, p. 3072.

    Article  CAS  Google Scholar 

  20. N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu, and H.M. Chen, Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives, Chem. Soc. Rev., 46(2017), No. 2, p. 337.

    Article  CAS  Google Scholar 

  21. A. Hauch, S.D. Ebbesen, S.H. Jensen, and M. Mogensen, Highly efficient high temperature electrolysis, J. Mater. Chem., 18(2008), No. 20, art. No. 2331.

  22. M.A. Laguna-Bercero, Recent advances in high temperature electrolysis using solid oxide fuel cells: A review, J. Power Sources, 203(2012), p. 4.

    Article  CAS  Google Scholar 

  23. K.F. Chen and S.P. Jiang, Review—Materials degradation of solid oxide electrolysis cells, J. Electrochem. Soc., 163(2016), No. 11, p. F3070.

    Article  CAS  Google Scholar 

  24. P. Moçoteguy and A. Brisse, A review and comprehensive analysis of degradation mechanisms of solid oxide electrolysis cells, Int. J. Hydrogen Energy, 38(2013), No. 36, p. 15887.

    Article  CAS  Google Scholar 

  25. A. Ursua, L.M. Gandia, and P. Sanchis, Hydrogen production from water electrolysis: Current status and future trends, Proc. IEEE, 100(2012), No. 2, p. 410.

    Article  CAS  Google Scholar 

  26. N.T. Stetson, S. McWhorter, and C.C. Ahn, Introduction to hydrogen storage, [in] R.B. Gupta, A. Basile, and T.N. Veziroğlu, eds., Compendium of Hydrogen Energy. Volume 2: Hydrogen Storage, Distribution and Infrastructure, Woodhead Publishing, Cambrige, 2016, p. 3.

    Chapter  Google Scholar 

  27. E.W. Lemmon, M.O. McLinden, and D.G. Friend, Thermo-physical properties of fluid systems, [in] P.J. Linstrom and W.G. Mallard, eds., NIST Chemistry Webbook, NIST Standard Reference Database, Vol. 69, National Institute of Standards and Technology, Gaithersburg, MD, 1998.

    Google Scholar 

  28. N. Stetson and M. Wieliczko, Hydrogen technologies for energy storage: A perspective, MRS Energy Sustainability, 7(2020), No. 1, art. No. 41.

  29. S. McWhorter and G. Ordaz, Onboard Type IV Compressed Hydrogen Storage Systems — Current Performance and Cost, DOE Fuel Cell Technologies Office, 2013 [2021-10-24]. https://www.hydrogen.energy.gov/pdfs/13010_onboard_storage_performance_cost.pdf

  30. NPROXX, Stationary Hydrogen Storage Applications [2021-11-10]. https://www.nproxx.com/hydrogen-storage-transport/stationary-applications/

  31. Hexagon, Hydrogen Storage and Distribution — Lightweight High-Pressure Systems for Hydrogen Storage & Distribution [2021-06-05]. https://hexagongroup.com/solutions/storage-distribution/hydrogen/

  32. Composite Advanced Technologies, LLC, Highway to Hydrogen [2021-12-01]. https://www.catecgases.com/hydrogen

  33. NPROXX, Hydrogen Storage for Filling Stations [2021-11-13]. https://www.nproxx.com/hydrogen-storage-transport/hydrogen-refuelling-stations/

  34. K.L. Simmons, Synergistically Enhanced Materials and Design Parameters for Reducing the Cost of Hydrogen Storage Tanks, DOE Hydrogen and Fuel Cells Program, 2014 [2021-10-20]. https://www.hydrogen.energy.gov/pdfs/progress14/iv_f_3_simmons_2014.pdf

  35. A.S. Lord, P.H. Kobos, and D.J. Borns, Geologic storage of hydrogen: Scaling up to meet city transportation demands, Int. J. Hydrogen Energy, 39(2014), No. 28, p. 15570.

    Article  CAS  Google Scholar 

  36. J. Michalski, U. Bünger, F. Crotogino, S. Donadei, G.S. Schneider, T. Pregger, K.K. Cao, and D. Heide, Hydrogen generation by electrolysis and storage in salt caverns: Potentials, economics and systems aspects with regard to the German energy transition, Int. J. Hydrogen Energy, 42(2017), No. 19, p. 13427.

    Article  CAS  Google Scholar 

  37. R. K. Ahluwalia, J.K. Peng, H.S. Roh, and D. Papadias, System Analysis of Physical and Materials-Based Hydrogen Storage, DOE Hydrogen and Fuel Cells Program, 2019 [2021-09-10]. https://www.hydrogen.energy.gov/pdfs/progress19/h2f_st001_ahluwalia_2019.pdf

  38. R.R. Ratnakar, N. Gupta, K. Zhang, C. van Doorne, J. Fesmire, B. Dindoruk, and V. Balakotaiah, Hydrogen supply chain and challenges in large-scale LH2 storage and transportation, Int. J. Hydrogen Energy, 46(2021), No. 47, p. 24149.

    Article  CAS  Google Scholar 

  39. V. Tietze, S. Luhr, and D. Stolten, Bulk storage vessels for compressed and liquid hydrogen, [in] D. Stolten and B. Emonts, eds., Hydrogen Science and Engineering: Materials, Processes, Systems and Technology, Wiley-VCH, Weinheim, 2016, p. 659.

    Chapter  Google Scholar 

  40. J. Andersson and S. Grönkvist, Large-scale storage of hydrogen, Int. J. Hydrogen Energy, 44(2019), No. 23, p. 11901.

    Article  CAS  Google Scholar 

  41. G. Valenti, Hydrogen liquefaction and liquid hydrogen storage, [in] Compendium of Hydrogen Energy. Volume 2: Hydrogen Storage, Distribution and Infrastructure, Woodhead Publishing, Cambridge, 2016, p. 27.

    Chapter  Google Scholar 

  42. A. Züttel, Hydrogen storage methods, Naturwissenschaften, 91(2004), No. 4, p. 157.

    Article  CAS  Google Scholar 

  43. J.B. von Colbe, J.R. Ares, J. Barale, M. Baricco, C. Buckley, G. Capurso, N. Gallandat, D.M. Grant, M.N. Guzik, I. Jacob, E.H. Jensen, T. Jensen, J. Jepsen, T. Klassen, M.V. Lototskyy, K. Manickam, A. Montone, J. Puszkiel, S. Sartori, D.A. Sheppard, A. Stuart, G. Walker, C.J. Webb, H. Yang, V. Yartys, A. Züttel, and M. Dornheim, Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives, Int. J. Hydrogen Energy, 44(2019), No. 15, p. 7780.

    Article  CAS  Google Scholar 

  44. C. Milanese, T.R. Jensen, B.C. Hauback, C. Pistidda, M. Dornheim, H. Yang, L. Lombardo, A. Zuettel, Y. Filinchuk, P. Ngene, P.E. de Jongh, C.E. Buckley, E.M. Dematteis, and M. Baricco, Complex hydrides for energy storage, Int. J. Hydrogen Energy, 44(2019), No. 15, p. 7860.

    Article  CAS  Google Scholar 

  45. M. Hirscher, V.A. Yartys, M. Baricco, J.B. von Colbe, D. Blanchard, R.C. Bowman, D.P. Broom, C.E. Buckley, F. Chang, P. Chen, Y.W. Cho, J.C. Crivello, F. Cuevas, W.I.F. David, P.E. de Jongh, R.V. Denys, M. Dornheim, M. Felderhoff, Y. Filinchuk, G.E. Froudakis, D.M. Grant, E.M. Gray, B.C. Hauback, T. He, T.D. Humphries, T.R. Jensen, S. Kim, Y. Kojima, M. Latroche, H.W. Li, M.V. Lototskyy, J.W. Makepeace, K.T. Møller, L. Naheed, P. Ngene, D. Noréus, M.M. Nygård, S.I. Orimo, M. Paskevicius, L. Pasquini, D.B. Ravnsbæk, M.V. Sofianos, T.J. Udovic, T. Vegge, G.S. Walker, C.J. Webb, C. Weidenthaler, and C. Zlotea, Materials for hydrogen-based energy storage — Past, recent progress and future outlook, J. Alloys Compd., 827(2020), art. No. 153548.

  46. Q. Li, X. Lin, Q. Luo, Y.A. Chen, J.F. Wang, B. Jiang, and F.S. Pan, Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 32.

    Article  CAS  Google Scholar 

  47. T. He, P. Pachfule, H. Wu, Q. Xu, and P. Chen, Hydrogen carriers, Nat. Rev. Mater., 1(2016), No. 12, art. No. 16059.

  48. A. Bourane, M. Elanany, T.V. Pham, and S.P. Katikaneni, An overview of organic liquid phase hydrogen carriers, Int. J. Hydrogen Energy, 41(2016), No. 48, p. 23075.

    Article  CAS  Google Scholar 

  49. S. Bradley and W. Wilczewski, Power-to-gas brings a new focus to the issue of energy storage from renewable sources, Today in Energy, 2015 [2021-11-21]. https://www.eia.gov/todayinenergy/detail.php?id=22212#

  50. FIBA Technologies, Superjumbo Tube Trailers, FIBA Technologies, Inc, Littleton [2021-12-09]. https://www.fibatech.com/products/tube-trailers-and-skids/superjumbo-tube-trailers/

  51. P. Schnell, Refueling station layout, [in] D. Stolten and B. Emonts, eds., Hydrogen Science and Engineering: Materials, Processes, Systems and Technology, Wiley-VCH, Weinheim, 2016, p. 891.

    Chapter  Google Scholar 

  52. R. Gerboni, Introduction to hydrogen transportation, [in] R.B. Gupta, A. Basile, and T.N. Veziroglu, eds., Compendium of Hydrogen Energy. Volume 2: Hydrogen Storage, Distribution and Infrastructure, Woodhead Publishing, Cambrige, 2016, p. 283.

    Chapter  Google Scholar 

  53. R.C. Samsun, L. Antoni, M. Rex, and D. Stolten, Deployment Status of Fuel Cells in Road Transport: 2021 Update, Forschungszentrum Jülich GmbH, Zentralbibliothek, Verlag, Jülich, 2021.

    Google Scholar 

  54. D. Apostolou and G. Xydis, A literature review on hydrogen refuelling stations and infrastructure. Current status and future prospects, Renewable Sustainable Energy Rev., 113(2019), art. No. 109292.

  55. S. Chubbock and R. Clague, Comparative analysis of internal combustion engine and fuel cell range extender, SAE Int. J. Alt. Power., 5(2016), No. 1, p. 175.

    Article  Google Scholar 

  56. A. Elgowainy and M.Q. Wang, Fuel Cycle Comparison of Distributed Power Generation Technologies, Office of Scientific and Technical Information (OSTI), Oak Ridge, TN, 2008 [2021-11-02]. https://www.osti.gov/biblio/946042-qtnABP/

    Google Scholar 

  57. Y.J. Wang, J.L. Qiao, R. Baker, and J.J. Zhang, Alkaline polymer electrolyte membranes for fuel cell applications, Chem. Soc. Rev., 42(2013), No. 13, p. 5768.

    Article  CAS  Google Scholar 

  58. J.R. Varcoe, P. Atanassov, D.R. Dekel, A.M. Herring, M.A. Hickner, P.A. Kohl, A.R. Kucernak, W.E. Mustain, K. Nijmeijer, K. Scott, T.W. Xu, and L. Zhuang, Anion-exchange membranes in electrochemical energy systems, Energy Environ. Sci., 7(2014), No. 10, p. 3135.

    Article  CAS  Google Scholar 

  59. Q.F. Li, D. Aili, H.A. Hjuler, and J.O. Jensen, High Temperature Polymer Electrolyte Membrane Fuel Cells: Approaches, Status, and Perspectives, Springer, Cham, 2016.

    Book  Google Scholar 

  60. L.X. Fan, Z.K. Tu, and S.H. Chan, Recent development of hydrogen and fuel cell technologies: A review, Energy Rep., 7(2021), p. 8421.

    Article  Google Scholar 

  61. M. Cassir, A. Meléndez-Ceballos, A. Ringuedé, and V. Lair, Molten carbonate fuel cells, [in] F. Barbir, A. Basile, and T.N. Veziroğlu, eds., Compendium of Hydrogen Energy. Volume 3: Hydrogen Energy Conversion, Woodhead Publishing, Cambridge, 2016, p. 71.

    Chapter  Google Scholar 

  62. A.S. Mehr, A. Lanzini, M. Santarelli, and M.A. Rosen, Polygeneration systems based on high temperature fuel cell (MCFC and SOFC) technology: System design, fuel types, modeling and analysis approaches, Energy, 228(2021), art. No. 120613.

  63. M. Singh, D. Zappa, and E. Comini, Solid oxide fuel cell: Decade of progress, future perspectives and challenges, Int. J. Hydrogen Energy, 46(2021), No. 54, p. 27643.

    Article  CAS  Google Scholar 

  64. B.S. Prakash, S.S. Kumar, and S.T. Aruna, Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: A review, Renewable Sustainable Energy Rev., 36(2014), p. 149.

    Article  CAS  Google Scholar 

  65. Z. Zakaria, Z. Awang Mat, S.H. Abu Hassan, and Y. Boon Kar, A review of solid oxide fuel cell component fabrication methods toward lowering temperature, Int. J. Energy Res., 44(2020), No. 2, p. 594.

    Article  CAS  Google Scholar 

  66. N. Mahato, A. Banerjee, A. Gupta, S. Omar, and K. Balani, Progress in material selection for solid oxide fuel cell technology: A review, Prog. Mater. Sci., 72(2015), p. 141.

    Article  CAS  Google Scholar 

  67. R.K. Mallick, S.B. Thombre, and N.K. Shrivastava, Vapor feed direct methanol fuel cells (DMFCs): A review, Renewable Sustainable Energy Rev., 56(2016), p. 51.

    Article  CAS  Google Scholar 

  68. B.G. Pollet, A.A. Franco, H. Su, H. Liang, and S. Pasupathi, Proton exchange membrane fuel cells, [in] F. Barbir, A. Basile, and T.N. Veziroğlu, eds., Compendium of Hydrogen Energy. Volume 3: Hydrogen Energy Conversion, Woodhead Publishing, Cambridge, 2016, p. 3.

    Chapter  Google Scholar 

  69. L.Y. Zhu, Y.C. Li, J. Liu, J. He, L.Y. Wang, and J.D. Lei, Recent developments in high-performance Nafion membranes for hydrogen fuel cells applications, Pet. Sci., (2021). https://doi.org/10.1016/j.petsci.2021.11.004

  70. D. Van Dao, G. Adilbish, I.H. Lee, and Y.T. Yu, Enhanced electrocatalytic property of Pt/C electrode with double catalyst layers for PEMFC, Int. J. Hydrogen Energy, 44(2019), No. 45, p. 24580.

    Article  CAS  Google Scholar 

  71. E. Middelman, Improved PEM fuel cell electrodes by controlled self-assembly, Fuel Cells Bull., 2002(2002), No. 11, p. 9.

    Article  Google Scholar 

  72. J.F. Lin, J. Wertz, R. Ahmad, M. Thommes, and A.M. Kannan, Effect of carbon paper substrate of the gas diffusion layer on the performance of proton exchange membrane fuel cell, Electrochim. Acta, 55(2010), No. 8, p. 2746.

    Article  CAS  Google Scholar 

  73. K. Panagi, C.J. Laycock, J.P. Reed, and A.J. Guwy, Highly efficient coproduction of electrical power and synthesis gas from biohythane using solid oxide fuel cell technology, Appl. Energy, 255(2019), art. No. 113854.

  74. M. Choolaei, Q. Cai, R.C.T. Slade, and B. Amini Horri, Nanocrystalline gadolinium-doped ceria (GDC) for SOFCs by an environmentally-friendly single step method, Ceram. Int., 44(2018), No. 11, p. 13286.

    Article  CAS  Google Scholar 

  75. M.Z. Ahmad, S.H. Ahmad, R.S. Chen, A.F. Ismail, R. Hazan, and N.A. Baharuddin, Review on recent advancement in cathode material for lower and intermediate temperature solid oxide fuel cells application, Int. J. Hydrogen Energy, 47(2022), No. 2, p. 1103.

    Article  CAS  Google Scholar 

  76. C. Xia, Y. Li, Y. Tian, Q.H. Liu, Z.M. Wang, L.J. Jia, Y.C. Zhao, and Y.D. Li, Intermediate temperature fuel cell with a doped ceria—carbonate composite electrolyte, J. Power Sources, 195(2010), No. 10, p. 3149.

    Article  CAS  Google Scholar 

  77. A. Ahuja, M. Gautam, A. Sinha, J. Sharma, P.K. Patro, and A. Venkatasubramanian, Effect of processing route on the properties of LSCF-based composite cathode for IT-SOFC, Bull. Mater. Sci., 43(2020), No. 1, art. No. 129.

  78. E.D. Wachsman and K.T. Lee, Lowering the temperature of solid oxide fuel cells, Science, 334(2011), No. 6058, p. 935.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51704017) and the International Communication Program for Young Scientists in USTB (No. QNXM20210010). Xuan Liu also acknowledges the financial support from the China Scholarship Council, which enabled his research visit to Technical University of Denmark in 2021.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuan Liu or Qingfeng Li.

Additional information

Conflict of Interest

All authors have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Liu, G., Xue, J. et al. Hydrogen as a carrier of renewable energies toward carbon neutrality: State-of-the-art and challenging issues. Int J Miner Metall Mater 29, 1073–1089 (2022). https://doi.org/10.1007/s12613-022-2449-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2449-9

Keywords

Navigation