Skip to main content
Log in

Studies on Silicon Containing Nano-hybrid Epoxy Coatings for the Protection of Corrosion and Bio-Fouling on Mild Steel

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

An epoxy nano-composite coating was developed using amine functionalized nZnO (in the amount of 2.5 %, 5.0 % and 7.5 wt %) as the dispersed phase and a commercially available epoxy resin as the matrix phase. The structural features of these materials were ascertained by FT-IR spectral studies. The anti-corrosive properties of the epoxy/nZnO hybrid coatings in comparison with a virgin coating were investigated by a salt spray test and electrochemical impedance spectroscopy technique. The surface morphology determined by SEM, indicates that nZnO particles were dispersed homogenously through the epoxy polymer matrix. The results showed improved antifouling and anticorrosive properties for epoxy-nZnO hybrid coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yebra D M, Kiil S, Dam-Johansen K (2004). Prog Org Coat 50: 75–104

    Article  CAS  Google Scholar 

  2. Wei-gang J, Ji-Ming H, Liang L, Zhang J-Q Chu (2006). Prog Org Coat 57: 439–443

    Article  Google Scholar 

  3. Bonati S, Monteleone F (2001). Biocidal-Antifouling Agents with Low Eco toxicity Index. International Application Publication. Publication No. WO0128328

  4. Hadfildk M G, Paul V J (2001). Biofouling 12: 9–29

    Article  Google Scholar 

  5. Borisova D, Mohwald H, Shchukin D G (2011). ACS Nano 5: 1939–1946

    Article  CAS  Google Scholar 

  6. Chang C C, Oyang T Y, Hwang F H, Chen C C, Cheng L P (2012). J Non-Cryst Solids 358: 72–76

    Article  CAS  Google Scholar 

  7. Chen C C, Lin D J, Don T M, Huang F H, Cheng L P (2008). J Non-Cryst Solids 354: 3828–3835

    Article  CAS  Google Scholar 

  8. Miyagawa H, Rich M J, Drzal L T (2004). J Polym Sci B 42: 4384–4390

    Article  CAS  Google Scholar 

  9. Becker O, Varley R, Simon G (2002). Polymer 43: 4365–4373

    Article  CAS  Google Scholar 

  10. Shi X, Nguyen T A, Suo Z, Liu Y, Avci R (2009). Surf Coat Technol 204: 237–245

    Article  CAS  Google Scholar 

  11. Champ M (2000). Sci Total Environ 258: 21–71

    Article  CAS  Google Scholar 

  12. Chang S I, Gray K A (2003). Met Organ Interact Environ Syst 43(1): 529–30

    CAS  Google Scholar 

  13. Kim J, Konstantinou I, Albanis T (2004). Environ Int 30: 235–48

    Article  Google Scholar 

  14. Miriam P, Guillermo B, Monica G, Beatriz del A, Mirta S (2006) Cupric tannate—A low copper content antifouling pigment 44(4): 311–315

  15. Zhang L, Jiang Y, Ding Y, Povey M, York D (2010). J Nanoparticle Res 9(3): 479–489

    Article  Google Scholar 

  16. Suwanboon S, Amornpitoksuk P, Bangrak P, Sukolrat A (2010). J Ceram Process Res 11(1): 547–551

    Google Scholar 

  17. Padmavathy N, Rajagopalan V (2008). Sci Technol Adv Mater 9: 035004–11

    Article  Google Scholar 

  18. Auffan M, Rose J, Bottero J Y, Lowry G V, Jolivet J P, Wiesner M R (2009). Nature Nanotechnol 4: 634–641

    Article  CAS  Google Scholar 

  19. Diego Meseguer Y, Soren K, Claus E, Weinell Kim Dam J (2006). Prog Org Coat 56: 327–337

    Article  Google Scholar 

  20. Delio R, Dordick R (2002). Biotechnol Progress 18: 551–5

    Article  Google Scholar 

  21. Banoee M, Seif S, Nazari ZE, Jafari-Fesharaki P, Shahverdi HR, Moballegh A, Moghaddam KM, Shahverdi AR (2010). E Publ 11(3): 77–79

    Google Scholar 

  22. Dhoke SK, Khanna AS (2012). Prog Org Coat 74: 92–99

    Article  Google Scholar 

  23. Dhoke SK, Khanna AS (2009). Mater Chem Phys 117: 550–556

    Article  Google Scholar 

  24. Yang JM, Lin HT, Lai WC (2002). J Membr Sci 208: 105

    Article  Google Scholar 

  25. Bai CY, Zhang XY, Dai JB, Zhang CY (2007). Prog Org Coat 59: 331

    Article  Google Scholar 

  26. Subramani S, Lee JM, Cheong IW, Kim JH (2005). J Appl Polym Sci 98: 620

    Article  Google Scholar 

  27. Ayman M, Ahmed F, Kafrawy EI, Morsy H, Abdel-Azim A (2007). Prog Org Coat 58: 13–22

    Article  Google Scholar 

  28. Sharif A, Naqvi F, Eram S, Kanak LV (2006). Prog Org Coat 55: 268–275

    Article  Google Scholar 

  29. Ananda Kumar S, Balakrishnan T, Alagar M, Denchev Z (2006). Prog Org Coat 55: 207–217

    Article  Google Scholar 

  30. Berndt M, Berndt CC, Cramer SD, Covino BS (2003) Corrosion - fundamentals, testing and protection. ASM international, USA 13

    Google Scholar 

  31. Bagherzadeh MR, Mahdavi F (2007). Prog Org Coat 60: 117–120

    Article  Google Scholar 

  32. Dong CF, Sheng H, An YH, Li XG, Xiao K, Cheng YF (2010). Prog Org Coat 67: 269–273

    Article  Google Scholar 

  33. Sinebryukhov SL, Gnedenkov AS, Mashtalyar DV, Gnedenkov SV (2010). Surf Coat Technol 205: 1697–1701

    Article  Google Scholar 

  34. Pebere N, Picaud T, Duprat M, Dabosi F (1989). Corros Sci 29: 1073–1086

    Article  Google Scholar 

  35. Mansfeld F (1995). J Appl Electrochem 25: 187–202

    Google Scholar 

  36. Ananda Kumar S, Sankara Narayanan TSN (2002). Prog Org Coat 45: 323–330

    Article  Google Scholar 

  37. Sankara Narayanan TSN, Subbaiyan M (1994). Met Finish 92(9): 33–36

    Google Scholar 

  38. Okazaki Y (2002). Biomaterials 23: 2071–2077

    Article  Google Scholar 

  39. Louis Floyd F, Avudiappan S, Gibson J, Mehta B, Smith P, Provder T (2009). J Escarsega Prog Org Coat 66(1): 8–34

    Article  Google Scholar 

  40. Hladky K, Callow LM, Dawson JL (1980). Brit Corros 15: 20–25

    Article  CAS  Google Scholar 

  41. Ananda Kumar S, Sasi Kumar A (2010). Prog Org Coat 68(3): 189–200

    Article  CAS  Google Scholar 

  42. ASTM (2004). D3623, Standard Test Method for Testing Antifouling Panels in Shallow Submergence

  43. Fabienne F, Isabelle L, Valerie L, Dominique H, Karine VR (2005). Prog Org Coat 54: 216–223

    Article  Google Scholar 

  44. Dhoke S K, Khanna A S, Mangal Sinha T J (2009). Prog Org Coat 64: 371–82

    Article  CAS  Google Scholar 

  45. Aswini K M, Rama Shanker M, Ramanuj N, Raju KVSN (2010). Prog Org Coat 67: 405–413

    Article  Google Scholar 

  46. Marieta C, Remiro G, Garmendia G, Harismendy I, Mondragón I (2003) Rphologies in toughened thermosetting matrices. Eur Polym J 39(10): 1965–1973, ISSN 0014-3057

    Article  Google Scholar 

  47. Nikolic G, Zlatkovic S, Cakic M, Cakic S, Lacnjevac C, Rajic Z (2010). Sensors 10(1): 684–696 ISSN 1424-8220

    Article  Google Scholar 

  48. Ramezanzadeh B, Attar MM, Farzam M (2011). J Therm Anal Calorim 103: 731–739

    Article  Google Scholar 

  49. Rigail-Ceden A, Sung CSP (2005). Polymer 46: 9378–9384

    Article  Google Scholar 

  50. Chalmers JM, Everall NJ, Schaeberle MD, Levin IW, Lewis EN, Kidder LH, Wilson J, Crocombe R (2002). Vib Spectrosc 30: 43–49

    Article  Google Scholar 

  51. Poisson N, Lachenal G, Sautereau H (1996). Vib Spectrosc 12: 237–247

    Article  Google Scholar 

  52. Mijovic J, Andjelic S (1996). Polymer 37: 1295–1303

    Article  Google Scholar 

  53. Billaud C, Vandeuren M, Legras R, Carlier V (2002). J Appl Spectrosc 56: 1413–1421

    Article  Google Scholar 

  54. Zlatkovic S, Nikolic GS, Stamenkovic J (2003). Chem Ind (Serb) 57: 563–567

    Article  Google Scholar 

  55. Krzysztof K, Tadeusz S (2008). Prog Org Coat 62: 425–429

    Article  Google Scholar 

  56. Selvaraj R, Selvaraj M, Iyer SV (2009). Prog Org Coat 42: 454–459

    Article  Google Scholar 

  57. Ayman MA, Abdou MI, Abdel A, Elsayed A, Mohamed E (2008). Prog Org Coat 63: 372–376

    Article  Google Scholar 

  58. Krishnan SM (2006). Prog Org Coat 57: 383–391

    Article  CAS  Google Scholar 

  59. Lam K, Lau KT (2006). Compo Struc 75: 553–558

    Article  Google Scholar 

  60. Hartwig A, Sebald M, Putz D, Aberle L (2005). Macromol Symp 221: 127–136

    Article  Google Scholar 

  61. Dietsche F, Thomann Y, Thomann R, Mulhaupt R (2000). J Appl Polym Sci 75: 396–405

    Article  Google Scholar 

  62. Ayman MA, Shanker NO, Abdou MI, Abdelfatah M (2006). Prog Org Coat 56: 91–99

    Article  Google Scholar 

  63. Arthananareeswari M, Sankara Narayanan TSN, Kamaraj P, Tamilselvi M (2012). J Coat Technol Res 9(1): 39–46

    Article  Google Scholar 

  64. Ananda Kumar S, Alagar M, Mohan V (2002). JMEPEG 11: 123–129

    Article  Google Scholar 

  65. Ananda Kumar S, Alagar M, Mohan V (2001). Surf Coat Int B Coat Trans 84: 43–48

    Article  Google Scholar 

  66. Pedro de LN, Alexsander PA, Walney SA, Adriana NC (2008). Prog Org Coat 62: 344–350

    Article  Google Scholar 

  67. Anandakumar S (2009). A novel epoxy coatings for corrosion and fouling resistance, in - Proceedings of Coatings Science International Conference, COSi

  68. Chen M, Qu Y, Yang L, Gao H (2008) Structures and antifouling properties of low surface energy non-toxic antifouling coatings modified by nano-SiO 2 powder. Sci China Ser B Chem 51: 848

    Article  Google Scholar 

Download references

Acknowledgments

Instrumentation facility provided under FIST-DST and DRS-UGC to Department of Chemistry, Anna University, Chennai are gratefully acknowledged. One of the authors Mr. P. Saravanan likes to thank the management of St. Joseph’s college of engineering, Chennai for the infrastructure and moral support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ananda Kumar Srinivasan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palanivelu, S., Dhanapal, D. & Srinivasan, A.K. Studies on Silicon Containing Nano-hybrid Epoxy Coatings for the Protection of Corrosion and Bio-Fouling on Mild Steel. Silicon 9, 447–458 (2017). https://doi.org/10.1007/s12633-014-9202-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-014-9202-6

Keywords

Navigation