Skip to main content
Log in

Design of a dual function buried channel waveguide for pulse compression and dispersion compensation in two different wavelengths for the purpose of optical integration

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Optical pulse compression and dispersion compensation are two important applications in optical systems. The present paper proposes a dual function buried channel waveguide to be used in two applications at the wavelengths of 900 nm and 1550 nm, respectively. The zero-dispersion wavelength in the designed waveguide is achieved to be 940 nm. By analyzing the data obtained through the finite-difference time-domain method (FDTD) and applying the optical pulse with full-width at half-maximum (FWHM) of 100 fs at the wavelength of 900 nm, the optical pulse is compressed with a compression factor of 9.8 after the waveguide length of 12 mm, which is very appropriate for nonlinear applications. Furthermore, the proposed waveguide yielded the negative dispersion value of −20,374 ps/nm/km at the wavelength of 1550 nm, which is a desirable value for dispersion compensation at the third telecom window regarding the simplicity of the structure and its matched relative dispersion slope (RDS) to that of the conventional optical fibers. Besides, considering the dual capabilities of the proposed waveguide at two different wavelengths, the proposed structure could be very suitable for integrating the optical devices using Y couplers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rastogi V, Ashok N, Kumar A (2011) Design and analysis of large-core high GVD planar optical waveguide for dispersion compensation. Appl Phys B Lasers Opt 105:821–824

    Article  CAS  Google Scholar 

  2. Zheng Z, Iqbal M, Liu J (2008) Dispersion characteristics of SOI-based slot optical waveguides. Opt Commun 281:5151–5155

    Article  CAS  Google Scholar 

  3. Karami R, Seifouri M, Olyaee S, Chitsazian M, Alizadeh MR (2016) Numerical analysis of a circular chalcogenide/silica hybrid nanostructured photonic crystal fiber for the purpose of dispersion compensation. Int J Numer Model. https://doi.org/10.1002/jnm.2184

  4. Ouellette F (1987) Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides. Opt Lett 12:847–849

    Article  CAS  PubMed  Google Scholar 

  5. C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L.T. Gomez, and R.E. Scotti, “Integrated all-pass filters for tunable diapersion and dispersion slope compensation,” IEEE Photon Technol Lett, vol. 11, no. 12, pp. 1623–1625, Dec. 1999

  6. Seifouri M, Olyaee S, Dekamin M, Rahim K (2017) Dispersion compensation in optical transmission systems Using high negative dispersion chalcogenide/silica hybrid microstructured optical fiber. Opt Rev 24:318–324. https://doi.org/10.1007/s10043-017-0322-2

    Article  CAS  Google Scholar 

  7. Brooks CJ, Vossler GL, Winick KA (1995) Integrated-optic dispersion compensator that uses chirped gratings. Opt Lett 20:368–370

    Article  CAS  PubMed  Google Scholar 

  8. Zhang L, Yue Y, Beausoleil RG, Willner AE (2010) Flattened dispersion in silicon slot waveguides. Opt Exp 18:20529–20534

    Article  CAS  Google Scholar 

  9. Liu Q, Gao S, Li Z, Xie Y, He S (2011) Dispersion engineering of a silicon-nanocrystal-based slot waveguide for broadband wavelength conversion. Appl Opt 50:1260–1265

    Article  PubMed  Google Scholar 

  10. Ghanbari A, Kashaninia A, Sadr A, Saghaei H (2018) “Supercontinuum generation with femtosecond optical pulse compression in silicon photonic crystal fibers at 2500 nm”, Optical and Quantum Electronics, 50. Article number 411

  11. Malinowski M, Rao A, Delfyett P, Fathpour S (2017) Optical frequency comb generation by pulsed pumping. APL Photonics 2:066101

    Article  Google Scholar 

  12. T. S. Cordeiro, M. M. Amaral, R. A. de Matos, F. R.O. Silva, N. D. Vieira Junior, L. C. Courrol, W. Rossi, R. E. Samad., “Modifying the second order dispersion of femtosecond laser pulses to crack silver nanoparticles and control their dimensions”, Opt Laser Technol, 118, 1–7, October 2019

  13. Hrdy J, Oberta P (2013) Possibility of X-ray pulse compression using an asymmetric or inclined double-crystal monochromator. J Synchrotron Radiat 20(Pt 4):550–554

    Article  CAS  PubMed  Google Scholar 

  14. T. M. Nguyen, S. Song, B. Arnal, Wong EY, Huang Z, Wang RK, O'Donnell M. “Shear wave pulse compression for dynamic elastography using phase-sensitive optical coherence tomography”. J Biomed Opt 19 (1):16013, (2014)

  15. Ducros N et al (2011) Multiple-view fluorescence optical tomography reconstruction using compression of experimental data. Opt Lett 36(8):1377–1379

    Article  PubMed  Google Scholar 

  16. Granados E, Spence D (2010) Pulse compression in synchronously pumped mode locked Raman lasers. Opt Express 18:20422–20427

    Article  PubMed  Google Scholar 

  17. Gliserin A, Walbran M, Krausz F, Baum P. “Sub-phonon-period compression of electron pulses for atomic diffraction.” Nat Commun, vol. 6, 8723. 27, (Oct. 2015), doi:https://doi.org/10.1038/ncomms9723

  18. Travers JC, Grigorova TF, Brahms C, Belli F (2019) High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres. Nat Photonics 13:547–554

    Article  CAS  Google Scholar 

  19. S. Olyaee, M. Seifouri, R. Karami, A. Mohebzadeh-Bahabady, “Designing a high sensitivity hexagonal nano-cavity photonic crystal resonator for the purpose of seawater salinity sensing”, Optical and Quantum ElectronicsIssue 4/2019

  20. Fathi F, Rashidi MR, Samadi Pakchin P, Ahmadi-Kandjani S, Nikniazi A (2021) Photonic crystal based biosensors: Emerging inverse opals for biomarker detection. Talanta 221:121615

    Article  CAS  PubMed  Google Scholar 

  21. Shafiee H, Lidstone E, Jahangir M et al (2014) Nanostructured Optical Photonic Crystal Biosensor for HIV Viral Load Measurement. Sci Rep 4:4116. https://doi.org/10.1038/srep04116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Taylor R, Otanicar T, Rosengarten G (2012) Nanofluid-based optical filter optimization for PV/T systems. Light Sci Appl 1:e34. https://doi.org/10.1038/lsa.2012.34

    Article  CAS  Google Scholar 

  23. Delphi G, Olyaee S, Seifouri M, Mohebzadeh-Bahabady A (2019) Design of low cross-talk and high quality factor 2-channel and 4-channel optical demultiplexers based on photonic crystal nano-ring resonator. Photon Netw Commun 38(2):250–257

    Article  Google Scholar 

  24. Mohammadi M, Seifouri M, Olyaee S, Karamirad M (2021) Optimization and realization all-optical compact five-channel demultiplexer using 2D photonic crystal based hexagonal cavities. J Comput Electron 1-9

  25. Olyaee S, Seifouri M, Azimi Sourani E (2020) Design and numerical analysis of an all-optical 4-channel power splitter in E, S, C, L, and U bands via nano-line defects in photonic crystal four-channel optical demultiplexer based on hexagonal photonic crystal ring resonators. JOpt Commun 41(3):241–247

    Google Scholar 

  26. Delphi G, Olyaee S, Seifouri M, Mohebzadeh-Bahabady A (2019) Design of an add filter and a 2-channel optical demultiplexer with high quality factor based on nano-ring resonator. J Comput Electron 18:1372–1378

    Article  CAS  Google Scholar 

  27. Y. Cheng et al., "Mid-Infrared Spectral Compression of Soliton Pulse in an Adiabatically Suspended Silicon Waveguide Taper," in IEEE Photonics Journal, vol. 11, no. 4, pp. 1–11, Aug. 2019, Art no. 4500911, doi: https://doi.org/10.1109/JPHOT.2019.2927392

  28. J. Huang, M. S. A. Gandhi and Q. Li, "Self-Similar Chirped Pulse Compression in the Tapered Silicon Ridge Slot Waveguide," in IEEE Journal of Selected Topics in Quantum Electronics, vol. 26, no. 2, pp. 1–8, March-April 2020, Art no 8300508, doi: https://doi.org/10.1109/JSTQE.2019.2935318

  29. Y. S. Lee, C. G. Lee, F. Bahloul, S. Kim and K. Oh, "Corrections to “Simultaneously Achieving a Large Negative Dispersion and a High Birefringence Over Er and Tm Dual Gain Bands in a Square Lattice Photonic Crystal Fiber”, Journal of Lightwave Technology, vol. 37, no. 13, pp. 3431–3431, 1 July1, 2019, doi: https://doi.org/10.1109/JLT.2019.2914849

  30. R. R. Mahmud, M. A. G. Khan and S. M. A. Razzak, "Design and Comparison of SF57 Over SiO2 on Same Structured PCF for Residual Dispersion Compensation," in IEEE Photonics Journal, vol. 8, no. 6, pp. 1–10, Dec. 2016, Art no. 7102710, doi: https://doi.org/10.1109/JPHOT.2016.2628802

  31. R. Chen et al., "Highly-Dispersive Mirrors with Advanced Group Delay Dispersion," in IEEE Photonics Technology Letters, vol. 32, no. 2, pp. 113–116, 15 Jan.15, 2020, doi: https://doi.org/10.1109/LPT.2019.2959259

  32. Singh M, Raghuwanshi SK (2015) Effect of higher order dispersion parameters on optical millimeter-wave generation using three parallel external optical modulators. J Appl Phys 117:023116

    Article  Google Scholar 

  33. Ashok N, Lak Lee Y, Shin W (2017) Chalcogenide waveguide structure for dispersion in mid-infrared wavelength. Jpn J Appl Phys 56:032501

    Article  Google Scholar 

  34. N. Ashok, Y. L. Lee and W. Shin, "Design and Study of Strip-Slot Waveguide Structure for Dispersion Analysis," in IEEE Photonics Journal, vol. 8, no. 1, pp. 1–8, Feb. 2016, Art no. 2700408, doi: https://doi.org/10.1109/JPHOT.2016.2519285

  35. Paul BK, Al-Zahrani FA, Kawsar Ahmed M, Thillai Rani KP, Pradeep S (2022) Ultra-high negative dispersion compensating modified square shape photonic crystal fiber for optical broadband communication. Alexandria Engineering J 61:2799–2806

    Article  Google Scholar 

  36. C. Mei et al., "High Degree Picosecond Pulse Compression in Chalcogenide-Silicon Slot Waveguide Taper," in Journal of Lightwave Technology, vol. 34, no. 16, pp. 3843–3852, 15 Aug.15, 2016, doi: https://doi.org/10.1109/JLT.2016.2581823

  37. Choi JW, Sohn BU, Chen GFR, Ng DKT, Tan DTH (2019) Soliton-effect optical pulse compression in CMOS-compatible ultra-silicon-rich nitride waveguides. APL Photonics 4:110804

    Article  Google Scholar 

  38. Borca CN, Apostolopoulos F, Gardillou HG, Limberger M, Pollnau R-PS (2007) Buried channel waveguides in Yb-doped KY(WO4)2 crystals fabricated by femtosecond laser irradiation. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2007.02.106

  39. Bettiol AA, Venugopal Rao S, Teo EJ, van Kan JA, Watt F (2006) Fabrication of buried channel waveguides in photosensitive glass using proton beam writing. Appl Phys Lett 88:171106

    Article  Google Scholar 

  40. Lin R, Chen F, Zhang X, Huang Y, Song B, Dai S, Zhang X, Ji W (2017) Mid-infrared optical properties of chalcogenide glasses within tin-antimony-selenium ternary system. Opt Express 25:25674–25688

    Article  CAS  PubMed  Google Scholar 

  41. Chen GFR, Wang T, Donnelly C, Tan DTH (2013) Second and third order dispersion generation using nonlinearly chirped silicon waveguide gratings. Opt Express 21:29223–29230

    Article  CAS  PubMed  Google Scholar 

  42. Halder A, Anower MS (2019) Relative dispersion slope matched highly birefringent and highly nonlinear dispersion compensating hybrid photonic crystal fiber. Photonics Nanostruct Fundam Appl 35:100704

    Article  Google Scholar 

  43. B. Tatian. Fitting refractive-index data with the Sellmeier dispersion formula, Appl Opt 23, 4477-4485 (1984)

  44. R. Cherif, A.B. Salem, M. Zghal, P. Besnard, Th. Chartier, L. Brilland, and J. Troles “Highly nonlinear As2Se3-based chalcogenide photonic crystal fiber for midinfrared supercontinuum generation”, Opt. Eng. Vol. 49, pp. 095002 (1–6), 2010

  45. Ahmed K, Chowdhury S, Paul BK, Sen S, Islam MS, Islam MI, Asaduzzaman S (2018) Ultra high birefringence and lower beat length for square shape PCF: Analysis effect on rotation angle and eccentricity. Alexandria Engineering J 57(4):3683–3691

    Article  Google Scholar 

Download references

Acknowledgements

This work has been done in Nano-photonics and Optoelectronics Research Laboratory (NORLab), Shahid Rajaee University.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

R. K.: data curation, writing - original draft, M. S.: review, S. O.: supervision, writing – review and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Saeed Olyaee.

Ethics declarations

Conflicts of interest/Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval

The authors declared that the manuscript ethics is approved as per the journal.

Consent to participate

Yes.

Consent for publication

The authors gave consent for publication as per the journal standard.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karami, R., Seifouri, M. & Olyaee, S. Design of a dual function buried channel waveguide for pulse compression and dispersion compensation in two different wavelengths for the purpose of optical integration. Silicon 14, 9701–9710 (2022). https://doi.org/10.1007/s12633-022-01718-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-01718-3

Keywords

Navigation