Skip to main content

Advertisement

Log in

Cisplatin Inhibits Hippocampal Cell Proliferation and Alters the Expression of Apoptotic Genes

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

The hippocampus, which is critical for memory and spatial navigation, contains a proliferating stem cell niche that is especially vulnerable to antineoplastic drugs such as cisplatin. Although the damaging effects of cisplatin have recently been recognized, the molecular mechanisms underlying its toxic effects on this vital region are largely unknown. Using a focused apoptosis gene array, we analyzed the early cisplatin-induced changes in gene expression in the hippocampus of adult Sprague–Dawley rats and compared the results to those from the inferior colliculus, a non-mitotic auditory region resistant to cisplatin-induced cell death. Two days after a 12 mg/kg dose of cisplatin, significant increases were observed in five proapoptotic genes: Bik, Bid, Bok, Trp53p2, and Card6 and a significant decrease in one antiapoptotic gene Bcl2a1. In contrast, Nol3, an antiapoptotic gene, showed a significant increase in expression. The cisplatin-induced increase in Bid mRNA and decrease in Bcl2a1 mRNA were accompanied by a corresponding increase and decrease of their respective proteins in the hippocampus. In contrast, the cisplatin-induced changes in Bcl2a1, Bid, Bik, and Bok gene expression in the inferior colliculus were strikingly different from those in the hippocampus consistent with the greater susceptibility of the hippocampus to cisplatin toxicity. Cisplatin also significantly reduced immunolabeling of the cell proliferation marker Ki67 in the subgranular zone of the hippocampus 2 days post-treatment. These results indicate that cisplatin-induced hippocampal cell death is mediated by increased expression of proapoptotic and decreased antiapoptotic genes and proteins that likely inhibit hippocampal cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe K, Wakatsuki T, Katsushima F, Monoe K, Kanno Y, Takahashi A et al (2009) A case of advanced intrahepatic cholangiocarcinoma successfully treated with chemosensitivity test-guided systemic chemotherapy. World J Gastroenterol 15:5228–5231

    PubMed Central  PubMed  CAS  Google Scholar 

  • Aimone JB, Wiles J, Gage FH (2009) Computational influence of adult neurogenesis on memory encoding. Neuron 61:187–202

    PubMed Central  PubMed  CAS  Google Scholar 

  • Amptoulach S, Tsavaris N (2011) Neurotoxicity caused by the treatment with platinum analogues. Chemother Res Pract 2011:843019

    PubMed Central  PubMed  Google Scholar 

  • Appleby PA, Kempermann G, Wiskott L (2011) The role of additive neurogenesis and synaptic plasticity in a hippocampal memory model with grid-cell like input. PLoS Comput Biol 7:e1001063

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bachstetter AD, Jernberg J, Schlunk A, Vila JL, Hudson C, Cole MJ et al (2010) Spirulina promotes stem cell genesis and protects against LPS induced declines in neural stem cell proliferation. PLoS ONE 5:e10496

    PubMed Central  PubMed  Google Scholar 

  • Barha CK, Ishrat T, Epp JR, Galea LA, Stein DG (2011) Progesterone treatment normalizes the levels of cell proliferation and cell death in the dentate gyrus of the hippocampus after traumatic brain injury. Exp Neurol 231:72–81

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bekinschtein P, Cammarota M, Igaz LM, Bevilaqua LR, Izquierdo I, Medina JH (2007) Persistence of long-term memory storage requires a late protein synthesis- and BDNF-dependent phase in the hippocampus. Neuron 53:261–277

    PubMed  CAS  Google Scholar 

  • Blank T, Nijholt I, Eckart K, Spiess J (2002) Priming of long-term potentiation in mouse hippocampus by corticotropin-releasing factor and acute stress: implications for hippocampus-dependent learning. J Neurosci 22:3788–3794

    PubMed  CAS  Google Scholar 

  • Bolouri MR, Small GA (2004) Neuroimaging of hypoxia and cocaine-induced hippocampal stroke. J Neuroimaging 14:290–291

    PubMed  Google Scholar 

  • Bullwinkel J, Baron-Luhr B, Ludemann A, Wohlenberg C, Gerdes J, Scholzen T (2006) Ki-67 protein is associated with ribosomal RNA transcription in quiescent and proliferating cells. J Cell Physiol 206:624–635

    PubMed  CAS  Google Scholar 

  • Cameron HA, McKay RD (2001) Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 435:406–417

    PubMed  CAS  Google Scholar 

  • Chang LW (1990) The neurotoxicology and pathology of organomercury, organolead, and organotin. J Toxicol Sci 15(Suppl 4):125–151

    PubMed  CAS  Google Scholar 

  • Chen D, Padiernos E, Ding F, Lossos IS, Lopez CD (2005a) Apoptosis-stimulating protein of p53-2 (ASPP2/53BP2L) is an E2F target gene. Cell Death Differ 12:358–368

    PubMed  CAS  Google Scholar 

  • Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI, Hinds MG et al (2005b) Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 17:393–403

    PubMed  CAS  Google Scholar 

  • Cheng Q, Lee HH, Li Y, Parks TP, Cheng G (2000) Upregulation of Bcl-x and Bfl-1 as a potential mechanism of chemoresistance, which can be overcome by NF-kappaB inhibition. Oncogene 19:4936–4940

    PubMed  CAS  Google Scholar 

  • Couillard-Despres S, Wuertinger C, Kandasamy M, Caioni M, Stadler K, Aigner R et al (2009) Ageing abolishes the effects of fluoxetine on neurogenesis. Mol Psychiatry 14:856–864

    PubMed  CAS  Google Scholar 

  • Dawe RJ, Bennett DA, Schneider JA, Arfanakis K (2011) Neuropathologic correlates of hippocampal atrophy in the elderly: a clinical, pathologic, postmortem MRI study. PLoS ONE 6:e26286

    PubMed Central  PubMed  CAS  Google Scholar 

  • Deng W, Aimone JB, Gage FH (2010) New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci 11:339–350

    PubMed Central  PubMed  CAS  Google Scholar 

  • Devarajan P, Savoca M, Castaneda MP, Park MS, Esteban-Cruciani N, Kalinec G et al (2002) Cisplatin-induced apoptosis in auditory cells: role of death receptor and mitochondrial pathways. Hear Res 174:45–54

    PubMed  CAS  Google Scholar 

  • Dietrich J, Han R, Yang Y, Mayer-Proschel M, Noble M (2006) CNS progenitor cells and oligodendrocytes are targets of chemotherapeutic agents in vitro and in vivo. J Biol 5:22

    PubMed Central  PubMed  Google Scholar 

  • Dufner A, Pownall S, Mak TW (2006) Caspase recruitment domain protein 6 is a microtubule-interacting protein that positively modulates NF-kappaB activation. Proc Natl Acad Sci USA 103:988–993

    PubMed Central  PubMed  CAS  Google Scholar 

  • Dufner A, Duncan GS, Wakeham A, Elford AR, Hall HT, Ohashi PS et al (2008) CARD6 is interferon inducible but not involved in nucleotide-binding oligomerization domain protein signaling leading to NF-kappaB activation. Mol Cell Biol 28:1541–1552

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O (2003) Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci USA 100:13632–13637

    PubMed Central  PubMed  CAS  Google Scholar 

  • Femenia T, Gomez-Galan M, Lindskog M, Magara S (2012) Dysfunctional hippocampal activity affects emotion and cognition in mood disorders. Brain Res 1476:58–70

    PubMed  CAS  Google Scholar 

  • Fuse-Nagase Y, Suwa K, Nagao Y (1997) Partial seizures associated with cisplatin administration: a case report. Clin Electroencephalogr 28:55–56

    PubMed  CAS  Google Scholar 

  • Geddes DM, LaPlaca MC, Cargill RS 2nd (2003) Susceptibility of hippocampal neurons to mechanically induced injury. Exp Neurol 184:420–427

    PubMed  CAS  Google Scholar 

  • Graciarena M, Depino AM, Pitossi FJ (2010) Prenatal inflammation impairs adult neurogenesis and memory related behavior through persistent hippocampal TGFbeta1 downregulation. Brain Behav Immun 24:1301–1309

    PubMed  CAS  Google Scholar 

  • Gregg RW, Molepo JM, Monpetit VJ, Mikael NZ, Redmond D, Gadia M et al (1992) Cisplatin neurotoxicity: the relationship between dosage, time, and platinum concentration in neurologic tissues, and morphologic evidence of toxicity. J Clin Oncol 10:795–803

    PubMed  CAS  Google Scholar 

  • Harter P, Sehouli J, Reuss A, Hasenburg A, Scambia G, Cibula D et al (2011) Prospective validation study of a predictive score for operability of recurrent ovarian cancer: the Multicenter Intergroup Study DESKTOP II. A project of the AGO Kommission OVAR, AGO Study Group, NOGGO, AGO-Austria, and MITO. Int J Gynecol Cancer 21:289–295

    PubMed  Google Scholar 

  • Hattiangady B, Rao MS, Shetty AK (2004) Chronic temporal lobe epilepsy is associated with severely declined dentate neurogenesis in the adult hippocampus. Neurobiol Dis 17:473–490

    PubMed  CAS  Google Scholar 

  • Henshall DC, Bonislawski DP, Skradski SL, Araki T, Lan JQ, Schindler CK et al (2001) Formation of the Apaf-1/cytochrome c complex precedes activation of caspase-9 during seizure-induced neuronal death. Cell Death Differ 8:1169–1181

    PubMed  CAS  Google Scholar 

  • Highley M, Meller ST, Pinkerton CR (1992) Seizures and cortical dysfunction following high-dose cisplatin administration in children. Med Pediatr Oncol 20:143–148

    PubMed  CAS  Google Scholar 

  • Holmgreen SP, Huang DC, Adams JM, Cory S (1999) Survival activity of Bcl-2 homologs Bcl-w and A1 only partially correlates with their ability to bind pro-apoptotic family members. Cell Death Differ 6:525–532

    PubMed  CAS  Google Scholar 

  • Hsu SY, Kaipia A, McGee E, Lomeli M, Hsueh AJ (1997) Bok is a pro-apoptotic Bcl-2 protein with restricted expression in reproductive tissues and heterodimerizes with selective anti-apoptotic Bcl-2 family members. Proc Natl Acad Sci USA 94:12401–12406

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hur J, Bell DW, Dean KL, Coser KR, Hilario PC, Okimoto RA et al (2006) Regulation of expression of BIK proapoptotic protein in human breast cancer cells: p53-dependent induction of BIK mRNA by fulvestrant and proteasomal degradation of BIK protein. Cancer Res 66:10153–10161

    PubMed  CAS  Google Scholar 

  • Hurria A, Goldfarb S, Rosen C, Holland J, Zuckerman E, Lachs MS et al (2006) Effect of adjuvant breast cancer chemotherapy on cognitive function from the older patient’s perspective. Breast Cancer Res Treat 98:343–348

    PubMed  CAS  Google Scholar 

  • Iosif RE, Ekdahl CT, Ahlenius H, Pronk CJ, Bonde S, Kokaia Z et al (2006) Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis. J Neurosci 26:9703–9712

    PubMed  CAS  Google Scholar 

  • Ishida N, Akaike M, Tsutsumi S, Kanai H, Masui A, Sadamatsu M et al (1997) Trimethyltin syndrome as a hippocampal degeneration model: temporal changes and neurochemical features of seizure susceptibility and learning impairment. Neuroscience 81:1183–1191

    PubMed  CAS  Google Scholar 

  • Ishikawa K, Kubo T, Shibanoki S, Matsumoto A, Hata H, Asai S (1997) Hippocampal degeneration inducing impairment of learning in rats: model of dementia? Behav Brain Res 83:39–44

    PubMed  CAS  Google Scholar 

  • Jacobs S, McCully CL, Murphy RF, Bacher J, Balis FM, Fox E (2010) Extracellular fluid concentrations of cisplatin, carboplatin, and oxaliplatin in brain, muscle, and blood measured using microdialysis in nonhuman primates. Cancer Chemother Pharmacol 65:817–824

    PubMed  CAS  Google Scholar 

  • James SE, Burden H, Burgess R, Xie Y, Yang T, Massa SM et al (2008) Anti-cancer drug induced neurotoxicity and identification of Rho pathway signaling modulators as potential neuroprotectants. Neurotoxicology 29:605–612

    PubMed Central  PubMed  CAS  Google Scholar 

  • Jamesdaniel S, Ding D, Kermany MH, Davidson BA, Knight PR, III, Salvi R et al (2008) Proteomic analysis of the balance between survival and cell death responses in cisplatin-mediated ototoxicity. J Proteome Res 7:3516–3524

    PubMed Central  PubMed  CAS  Google Scholar 

  • Jessberger S, Clark RE, Broadbent NJ, Clemenson GD Jr, Consiglio A, Lie DC et al (2009) Dentate gyrus-specific knockdown of adult neurogenesis impairs spatial and object recognition memory in adult rats. Learn Mem 16:147–154

    PubMed Central  PubMed  Google Scholar 

  • Jin K, Sun Y, Xie L, Batteur S, Mao XO, Smelick C et al (2003) Neurogenesis and aging: FGF-2 and HB-EGF restore neurogenesis in hippocampus and subventricular zone of aged mice. Aging Cell 2:175–183

    PubMed  CAS  Google Scholar 

  • Ju C, Hamaue N, Machida T, Liu Y, Iizuka K, Wang Y et al (2008) Anti-inflammatory drugs ameliorate opposite enzymatic changes in ileal 5-Hydroxytryptamine metabolism in the delayed phase after cisplatin administration to rats. Eur J Pharmacol 589:281–287

    PubMed  CAS  Google Scholar 

  • Jung M, Hotter G, Vinas JL, Sola A (2009) Cisplatin upregulates mitochondrial nitric oxide synthase and peroxynitrite formation to promote renal injury. Toxicol Appl Pharmacol 234:236–246

    PubMed  CAS  Google Scholar 

  • Kaasa S, Olsnes BT, Thorud E, Host H (1988) Reduced short-term neuropsychological performance in patients with nonsmall-cell lung cancer treated with cisplatin and etoposide. Antibiot Chemother 41:226–231

    PubMed  CAS  Google Scholar 

  • Kang KP, Kim DH, Jung YJ, Lee AS, Lee S, Lee SY et al (2009) Alpha-lipoic acid attenuates cisplatin-induced acute kidney injury in mice by suppressing renal inflammation. Nephrol Dial Transplant 24:3012–3020

    PubMed  CAS  Google Scholar 

  • Kannarkat G, Lasher EE, Schiff D (2007) Neurologic complications of chemotherapy agents. Curr Opin Neurol 20:719–725

    PubMed  CAS  Google Scholar 

  • Kesner RP, Williams JM (1995) Memory for magnitude of reinforcement: dissociation between the amygdala and hippocampus. Neurobiol Learn Mem 64:237–244

    PubMed  CAS  Google Scholar 

  • Kim JB, Ju JY, Kim JH, Kim TY, Yang BH, Lee YS et al (2004a) Dexamethasone inhibits proliferation of adult hippocampal neurogenesis in vivo and in vitro. Brain Res 1027:1–10

    PubMed  CAS  Google Scholar 

  • Kim JK, Kim KD, Lee E, Lim JS, Cho HJ, Yoon HK et al (2004b) Up-regulation of Bfl-1/A1 via NF-kappaB activation in cisplatin-resistant human bladder cancer cell line. Cancer Lett 212:61–70

    PubMed  CAS  Google Scholar 

  • Kraus KS, Mitra S, Jimenez Z, Hinduja S, Ding D, Jiang H et al (2010) Noise trauma impairs neurogenesis in the rat hippocampus. Neuroscience 167:1216–1226

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kyd RJ, Bilkey DK (2005) Hippocampal place cells show increased sensitivity to changes in the local environment following prefrontal cortex lesions. Cereb Cortex 15:720–731

    PubMed  Google Scholar 

  • Lane DP (1992) Worrying about p53. Curr Biol 2:581–583

    PubMed  CAS  Google Scholar 

  • Lee S, Moon SO, Kim W, Sung MJ, Kim DH, Kang KP et al (2006) Protective role of L-2-oxothiazolidine-4-carboxylic acid in cisplatin-induced renal injury. Nephrol Dial Transplant 21:2085–2095

    PubMed  CAS  Google Scholar 

  • Li S, Gokden N, Okusa MD, Bhatt R, Portilla D (2005) Anti-inflammatory effect of fibrate protects from cisplatin-induced ARF. Am J Physiol Renal Physiol 289:F469–F480

    PubMed  CAS  Google Scholar 

  • Li C, Li R, Grandis JR, Johnson DE (2008) Bortezomib induces apoptosis via Bim and Bik up-regulation and synergizes with cisplatin in the killing of head and neck squamous cell carcinoma cells. Mol Cancer Ther 7:1647–1655

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lim CS, Jin DQ, Mok H, Oh SJ, Lee JU, Hwang JK et al (2005) Antioxidant and antiinflammatory activities of xanthorrhizol in hippocampal neurons and primary cultured microglia. J Neurosci Res 82:831–838

    PubMed  CAS  Google Scholar 

  • Liu Y, Hamaue N, Endo T, Hirafuji M, Minami M (2003) 5-hydroxytryptamine (5-HT) concentrations in the hippocampus, the hypothalamus and the medulla oblongata related to cisplatin-induced pica of rats. Res Commun Mol Pathol Pharmacol 113–114:97–113

    PubMed  Google Scholar 

  • Lowenstein DH, Thomas MJ, Smith DH, McIntosh TK (1992) Selective vulnerability of dentate hilar neurons following traumatic brain injury: a potential mechanistic link between head trauma and disorders of the hippocampus. J Neurosci 12:4846–4853

    PubMed  CAS  Google Scholar 

  • Luft T, Amaral OB, Schwartsmann G, Roesler R (2008) Transient disruption of fear-related memory by post-retrieval inactivation of gastrin-releasing peptide or N-methyl-D-aspartate receptors in the hippocampus. Curr Neurovasc Res 5:21–27

    PubMed  CAS  Google Scholar 

  • Mandic A, Viktorsson K, Strandberg L, Heiden T, Hansson J, Linder S et al (2002) Calpain-mediated Bid cleavage and calpain-independent Bak modulation: two separate pathways in cisplatin-induced apoptosis. Mol Cell Biol 22:3003–3013

    PubMed Central  PubMed  CAS  Google Scholar 

  • Manohar S, Paolone NA, Bleichfeld M, Hayes SH, Salvi RJ, Baizer JS (2012) Expression of doublecortin, a neuronal migration protein, in unipolar brush cells of the vestibulocerebellum and dorsal cochlear nucleus of the adult rat. Neuroscience 202:169–183

    PubMed Central  PubMed  CAS  Google Scholar 

  • Martinou JC, Youle RJ (2011) Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell 21:92–101

    PubMed Central  PubMed  CAS  Google Scholar 

  • Matsuda T, Takayama T, Tashiro M, Nakamura Y, Ohashi Y, Shimozuma K (2005) Mild cognitive impairment after adjuvant chemotherapy in breast cancer patients—evaluation of appropriate research design and methodology to measure symptoms. Breast Cancer 12:279–287

    PubMed  Google Scholar 

  • Medina-Ramirez CM, Goswami S, Smirnova T, Bamira D, Benson B, Ferrick N et al (2011) Apoptosis inhibitor ARC promotes breast tumorigenesis, metastasis, and chemoresistance. Cancer Res 71:7705–7715

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mercier I, Vuolo M, Madan R, Xue X, Levalley AJ, Ashton AW et al (2005) ARC, an apoptosis suppressor limited to terminally differentiated cells, is induced in human breast cancer and confers chemo- and radiation-resistance. Cell Death Differ 12:682–686

    PubMed  CAS  Google Scholar 

  • Mezosi E, Wang SH, Utsugi S, Bajnok L, Bretz JD, Gauger PG et al (2004) Interleukin-1beta and tumor necrosis factor (TNF)-alpha sensitize human thyroid epithelial cells to TNF-related apoptosis-inducing ligand-induced apoptosis through increases in procaspase-7 and bid, and the down-regulation of p44/42 mitogen-activated protein kinase activity. J Clin Endocrinol Metab 89:250–257

    PubMed  CAS  Google Scholar 

  • Minami T, Okazaki J, Kawabata A, Kuroda R, Okazaki Y (1998) Penetration of cisplatin into mouse brain by lipopolysaccharide. Toxicology 130:107–113

    PubMed  CAS  Google Scholar 

  • Moita MA, Rosis S, Zhou Y, LeDoux JE, Blair HT (2003) Hippocampal place cells acquire location-specific responses to the conditioned stimulus during auditory fear conditioning. Neuron 37:485–497

    PubMed  CAS  Google Scholar 

  • Monje ML, Toda H, Palmer TD (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302:1760–1765

    PubMed  CAS  Google Scholar 

  • Morgan RJ Jr, Leong L, Chow W, Gandara D, Frankel P, Garcia A et al (2012) Phase II trial of bryostatin-1 in combination with cisplatin in patients with recurrent or persistent epithelial ovarian cancer: a California cancer consortium study. Invest New Drugs 30:723–728

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mustafa S, Walker A, Bennett G, Wigmore PM (2008) 5-Fluorouracil chemotherapy affects spatial working memory and newborn neurons in the adult rat hippocampus. Eur J Neurosci 28:323–330

    PubMed  Google Scholar 

  • Naumovski L, Cleary ML (1996) The p53-binding protein 53BP2 also interacts with Bc12 and impedes cell cycle progression at G2/M. Mol Cell Biol 16:3884–3892

    PubMed Central  PubMed  CAS  Google Scholar 

  • Navarro-Quiroga I, Hernandez-Valdes M, Lin SL, Naegele JR (2006) Postnatal cellular contributions of the hippocampus subventricular zone to the dentate gyrus, corpus callosum, fimbria, and cerebral cortex. J Comp Neurol 497:833–845

    PubMed  Google Scholar 

  • Niedermeyer E, Ghigo JO (2011) Alzheimer dementia: an overview and a promising new concept. Am J Electroneurodiagnostic Technol 51:82–91

    PubMed  Google Scholar 

  • Ortin I, Gonzalez JF, Cuesta Ede L, Manguan-Garcia C, Perona R, Avendano C (2009) Cytotoxicity mechanisms of pyrazino[1,2-b]isoquinoline-4-ones and SAR studies. Bioorg Med Chem 17:8040–8047

    PubMed  CAS  Google Scholar 

  • Piccolini VM, Cerri S, Romanelli E, Bernocchi G (2012) Interactions of neurotransmitter systems during postnatal development of the rat hippocampal formation: effects of cisplatin. Exp Neurol 234:239–252

    PubMed  CAS  Google Scholar 

  • Pietropaolo S, Paterna JC, Bueler H, Feldon J, Yee BK (2007) Bidirectional changes in water-maze learning following recombinant adenovirus-associated viral vector (rAAV)-mediated brain-derived neurotrophic factor expression in the rat hippocampus. Behav Pharmacol 18:533–547

    PubMed  CAS  Google Scholar 

  • Prestia A, Boccardi M, Galluzzi S, Cavedo E, Adorni A, Soricelli A et al (2011) Hippocampal and amygdalar volume changes in elderly patients with Alzheimer’s disease and schizophrenia. Psychiatry Res 192:77–83

    PubMed  Google Scholar 

  • Ramesh G, Reeves WB (2004) Inflammatory cytokines in acute renal failure. Kidney Int 66(91 Suppl):S56–S61

    Google Scholar 

  • Rzeski W, Pruskil S, Macke A, Felderhoff-Mueser U, Reiher AK, Hoerster F et al (2004) Anticancer agents are potent neurotoxins in vitro and in vivo. Ann Neurol 56:351–360

    PubMed  CAS  Google Scholar 

  • Scoville WB, Milner B (2000) Loss of recent memory after bilateral hippocampal lesions. J Neuropsychiatry Clin Neurosci 12:103–113

    PubMed  CAS  Google Scholar 

  • Sehouli J, Runnebaum IB, Fotopoulou C, Blohmer U, Belau A, Leber H et al (2012) A randomized phase III adjuvant study in high-risk cervical cancer: simultaneous radiochemotherapy with cisplatin (S-RC) versus systemic paclitaxel and carboplatin followed by percutaneous radiation (PC-R): a NOGGO-AGO Intergroup Study. Ann Oncol 23:2259–2264

    PubMed  CAS  Google Scholar 

  • Shabani M, Larizadeh MH, Parsania S, Hajali V, Shojaei A (2012) Evaluation of destructive effects of exposure to cisplatin during developmental stage: no profound evidence for sex differences in impaired motor and memory performance. Int J Neurosci 122:439–448

    PubMed  CAS  Google Scholar 

  • Shih AY, Erb H, Sun X, Toda S, Kalivas PW, Murphy TH (2006) Cystine/glutamate exchange modulates glutathione supply for neuroprotection from oxidative stress and cell proliferation. J Neurosci 26:10514–10523

    PubMed  CAS  Google Scholar 

  • Shu SY, Ju G, Fan LZ (1988) The glucose oxidase-DAB-nickel method in peroxidase histochemistry of the nervous system. Neurosci Lett 85:169–171

    PubMed  CAS  Google Scholar 

  • So H, Kim H, Kim Y, Kim E, Pae HO, Chung HT et al (2008) Evidence that cisplatin-induced auditory damage is attenuated by downregulation of pro-inflammatory cytokines via Nrf2/HO-1. J Assoc Res Otolaryngol 9:290–306

    PubMed Central  PubMed  Google Scholar 

  • Soussain C, Ricard D, Fike JR, Mazeron JJ, Psimaras D, Delattre JY (2009) CNS complications of radiotherapy and chemotherapy. Lancet 374:1639–1651

    PubMed  CAS  Google Scholar 

  • Tanaka A, Watanabe Y, Kato H, Araki T (2007) Immunohistochemical changes related to ageing in the mouse hippocampus and subventricular zone. Mech Ageing Dev 128:303–310

    PubMed  CAS  Google Scholar 

  • Troy L, McFarland K, Littman-Power S, Kelly BJ, Walpole ET, Wyld D et al (2000) Cisplatin-based therapy: a neurological and neuropsychological review. Psychooncology 9:29–39

    PubMed  CAS  Google Scholar 

  • Tsuji T, Kato A, Yasuda H, Miyaji T, Luo J, Sakao Y et al (2009) The dimethylthiourea-induced attenuation of cisplatin nephrotoxicity is associated with the augmented induction of heat shock proteins. Toxicol Appl Pharmacol 234:202–208

    PubMed  CAS  Google Scholar 

  • Valente T, Hidalgo J, Bolea I, Ramirez B, Angles N, Reguant J et al (2009) A diet enriched in polyphenols and polyunsaturated fatty acids, LMN diet, induces neurogenesis in the subventricular zone and hippocampus of adult mouse brain. J Alzheimers Dis 18:849–865

    PubMed  CAS  Google Scholar 

  • Van Der Gucht E, Youakim M, Arckens L, Hof PR, Baizer JS (2006) Variations in the structure of the prelunate gyrus in Old World monkeys. Anat Rec A Discov Mol Cell Evol Biol 288:753–775

    PubMed Central  Google Scholar 

  • van Praag H, Christie BR, Sejnowski TJ, Gage FH (1999) Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci USA 96:13427–13431

    PubMed Central  PubMed  Google Scholar 

  • van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH (2002) Functional neurogenesis in the adult hippocampus. Nature 415:1030–1034

    PubMed  Google Scholar 

  • Vanderwolf CH (2001) The hippocampus as an olfacto-motor mechanism: were the classical anatomists right after all? Behav Brain Res 127:25–47

    PubMed  CAS  Google Scholar 

  • Veena J, Srikumar BN, Mahati K, Bhagya V, Raju TR, Shankaranarayana Rao BS (2009) Enriched environment restores hippocampal cell proliferation and ameliorates cognitive deficits in chronically stressed rats. J Neurosci Res 87:831–843

    PubMed  CAS  Google Scholar 

  • Verstappen CC, Heimans JJ, Hoekman K, Postma TJ (2003) Neurotoxic complications of chemotherapy in patients with cancer: clinical signs and optimal management. Drugs 63:1549–1563

    PubMed  CAS  Google Scholar 

  • Vogler M (2012) BCL2A1: the underdog in the BCL2 family. Cell Death Differ 19:67–74

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wakahara K, Kobayashi H, Yagyu T, Matsuzaki H, Kondo T, Kurita N et al (2005) Bikunin suppresses lipopolysaccharide-induced lethality through down-regulation of tumor necrosis factor- alpha and interleukin-1 beta in macrophages. J Infect Dis 191:930–938

    PubMed  CAS  Google Scholar 

  • Wang GQ, Gastman BR, Wieckowski E, Goldstein LA, Gambotto A, Kim TH et al (2001) A role for mitochondrial Bak in apoptotic response to anticancer drugs. J Biol Chem 276:34307–34317

    PubMed  CAS  Google Scholar 

  • Wang Q, Li A, Wang H, Wang J (2012) Knockdown of apoptosis repressor with caspase recruitment domain (ARC) increases the sensitivity of human glioma cell line U251MG to VM-26. Int J Clin Exp Pathol 5:555–561

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wei L, Ding D, Salvi R (2010) Salicylate-induced degeneration of cochlea spiral ganglion neurons-apoptosis signaling. Neuroscience 168:288–299

    PubMed Central  PubMed  CAS  Google Scholar 

  • Weiss B (2008) Chemobrain: a translational challenge for neurotoxicology. Neurotoxicology 29:891–898

    PubMed Central  PubMed  CAS  Google Scholar 

  • Werner AB, de Vries E, Tait SW, Bontjer I, Borst J (2002) Bcl-2 family member Bfl-1/A1 sequesters truncated bid to inhibit is collaboration with pro-apoptotic Bak or Bax. J Biol Chem 277:22781–22788

    PubMed  CAS  Google Scholar 

  • Whitney KA, Lysaker PH, Steiner AR, Hook JN, Estes DD, Hanna NH (2008) Is “chemobrain” a transient state? A prospective pilot study among persons with non-small cell lung cancer. J Support Oncol 6:313–321

    PubMed  Google Scholar 

  • Xu Y, Yu H, Qin H, Kang J, Yu C, Zhong J et al (2012) Inhibition of autophagy enhances cisplatin cytotoxicity through endoplasmic reticulum stress in human cervical cancer cells. Cancer Lett 314:232–243

    PubMed  CAS  Google Scholar 

  • Yakovlev AG, Di Giovanni S, Wang G, Liu W, Stoica B, Faden AI (2004) BOK and NOXA are essential mediators of p53-dependent apoptosis. J Biol Chem 279:28367–28374

    PubMed  CAS  Google Scholar 

  • Yang FY, Lee PY (2012) Efficiency of drug delivery enhanced by acoustic pressure during blood-brain barrier disruption induced by focused ultrasound. Int J Nanomedicine 7:2573–2582

    PubMed Central  PubMed  CAS  Google Scholar 

  • Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59

    PubMed  CAS  Google Scholar 

  • Zhang N, Hartig H, Dzhagalov I, Draper D, He YW (2005) The role of apoptosis in the development and function of T lymphocytes. Cell Res 15:749–769

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research supported in part by NIH grant (R01DC011808).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Salvi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manohar, S., Jamesdaniel, S. & Salvi, R. Cisplatin Inhibits Hippocampal Cell Proliferation and Alters the Expression of Apoptotic Genes. Neurotox Res 25, 369–380 (2014). https://doi.org/10.1007/s12640-013-9443-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-013-9443-y

Keywords

Navigation