Skip to main content
Log in

Vulnerability to a Metabolic Challenge Following Perinatal Asphyxia Evaluated by Organotypic Cultures: Neonatal Nicotinamide Treatment

  • ORIGINAL ARTICLE
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

The hypothesis of enhanced vulnerability following perinatal asphyxia was investigated with a protocol combining in vivo and in vitro experiments. Asphyxia-exposed (AS) (by 21 min water immersion of foetuses containing uterine horns) and caesarean-delivered control (CS) rat neonates were used at P2-3 for preparing triple organotypic cultures (substantia nigra, neostriatum and neocortex). At DIV 18, cultures were exposed to different concentrations of H2O2 (0.25–45 mM), added to the culture medium for 18 h. After a 48-h recovery period, the cultures were either assessed for cell viability or for neurochemical phenotype by confocal microscopy. Energy metabolism (ADP/ATP ratio), oxidative stress (GSH/GSSG) and a modified ferric reducing/antioxidant power assay were applied to homogenates of parallel culture series. In CS cultures, the number of dying cells was similar in substantia nigra, neostriatum and neocortex, but it was several times increased in AS cultures evaluated under the same conditions. A H2O2 challenge led to a concentration-dependent increase in cell death (>fourfold after 0.25 mM of H2O2) in CS cultures. In AS cultures, a significant increase in cell death was only observed after 0.5 mM of H2O2. At higher than 1 mM of H2O2 (up to 45 mM), cell death increased several times in all cultures, but the effect was still more prominent in CS than in AS cultures. The cell phenotype of dying/alive cells was investigated in formalin-fixed cultures exposed to 0 or 1 mM of H2O2, co-labelling for TUNEL (apoptosis), MAP-2 (neuronal phenotype), GFAP (astroglial phenotype) and TH (tyrosine hydroxylase; for dopamine phenotype), counterstaining for DAPI (nuclear staining), also evaluating the effect of a single dose of nicotinamide (0.8 nmol/kg, i.p. injected in 100 μL, 60 min after delivery). Perinatal asphyxia produced a significant increase in the number of DAPI/TUNEL cells/mm3, in substantia nigra and neostriatum. One millimolar of H202 increased the number of DAPI/TUNEL cells/mm3 by ≈twofold in all regions of CS and AS cultures, an effect that was prevented by neonatal nicotinamide treatment. In substantia nigra, the number of MAP-2/TH-positive cells/mm3 was decreased in AS compared to CS cultures, also by 1 mM of H202, both in CS and AS cultures, prevented by nicotinamide. In agreement, the number of MAP-2/TUNEL-positive cells/mm3 was increased by 1 mM H2O2, both in CS (twofold) and AS (threefold) cultures, prevented by nicotinamide. The number of MAP-2/TH/TUNEL-positive cells/mm3 was only increased in CS (>threefold), but not in AS (1.3-fold) cultures. No TH labelling was observed in neostriatum, but 1 mM of H2O2 produced a strong increase in the number of MAP-2/TUNEL-positive cells/mm3, both in CS (>2.9-fold) and AS (>fourfold), decreased by nicotinamide. In neocortex, H2O2 increased the number of MAP-2/TUNEL-positive cells/mm3, both in CS and AS cultures (≈threefold), decreased by nicotinamide. The ADP/ATP ratio was increased in AS culture homogenates (>sixfold), compared to CS homogenates, increased by 1 mM of H202, both in CS and AS homogenates. The GSH/GSSG ratio was significantly decreased in AS, compared to CS cultures. One millimolar of H2O2 decreased that ratio in CS and AS homogenates. The present results demonstrate that perinatal asphyxia induces long-term changes in metabolic pathways related to energy and oxidative stress, priming cell vulnerability with both neuronal and glial phenotype. The observed effects were region dependent, being the substantia nigra particularly prone to cell death. Nicotinamide administration in vivo prevented the deleterious effects observed after perinatal asphyxia in vitro, a suitable pharmacological strategy against the deleterious consequences of perinatal asphyxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ADP:

Adenosine diphosphate

AIF:

Apoptosis-inducing factor

AM:

Calcein-acetoxymethyl ester

AS:

Asphyxia-exposed rats

ATP:

Adenosine triphosphate

BCA:

Bicinchoninic acid

Bcl-2:

B-cell lymphoma 2

Bnip3:

BCL2 interacting protein 3

CS:

Caesarean-delivered rats

Cx:

Neocortex

DAPI:

4′6-Diamidino-2-phenylindole

DIV:

Days in vitro

DMEM:

Dulbecco’s modified Eagle medium

DTNB:

5,5′-Dithiobis-2-nitrobenzoic acid

EthD-1:

Ethidium-homodimer

G:

Gestation day

GFAP:

Glial fibrillary acidic protein

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione

HIF-1α:

Hypoxia induced factor-1α

i.p.:

Intraperitoneal

MAP-2:

Microtubule-associated protein-2

NAD+ :

Nicotinamide adenine dinucleotide

NADPH:

Nicotinamide adenine dinucleotide phosphate

NAM:

Nicotinamide, niacinamide, vitamine B3

Nix:

BCL2/adenovirus E1B interacting protein 3-like

NMDA:

N-methyl-d-aspartate

nNOS:

Neuronal nitric oxide synthase

NO:

Nitric oxide

Noxa:

Phorbol-12-myristate-13-acetate-induced protein 1

PA:

Perinatal asphyxia

PARP-1:

Poly(ADP-ribose) polymerase-1

PBS:

Phosphate-buffered saline

PLS:

Partial least squares

RFU:

Relative fluorescence units

ROS:

Reactive oxidative species

RNS:

Reactive nitrosylated species

SN:

Substantia nigra

Str:

Neostriatum

TH:

Tyrosine hydroxylase

TUNEL:

Terminal deoxynucleotidyl transferase dUTP nick end labelling

References

  • Allende-Castro C, Espina-Marchant P, Bustamante D, Rojas-Mancilla E, Neira T, Gutierrez-Hernandez MA, Esmar D, Valdes JL, Morales P, Gebicke-Haerter PJ, Herrera-Marschitz M (2012) Further studies on the hypothesis of PARP-1 inhibition as strategy for lessening the long-term effects produced by perinatal asphyxia: effects of nicotinamide and theophylline on PARP-1 activity in brain and peripheral tissue. Neurotox Res 22:79–90

    Article  CAS  PubMed  Google Scholar 

  • Amoroso S, Tortiglione A, Secondo A, Catalano A, Montagni S, Di Renzo G, Annunziato L (2000) Sodium nitroprusside prevents chemical hypoxia-induced cell death through iron ions stimulating the activity of the Na+-Ca2+ exchanger in C6 glioma cells. J Neurochem 74:1505–1513

    Article  CAS  PubMed  Google Scholar 

  • Ara J, Fekete S, Frank M, Golden JA, Pleasure D, Valencia I (2011) Hypoxic-preconditioning induces neuroprotection against hypoxia-ischemia in newborn piglet brain. Neurobiol Dis 43:473–485

    Article  CAS  PubMed  Google Scholar 

  • Aschbacher K, O’Donovan A, Wolkowitz OM, Dhabhar FS, Su Y, Epel E (2013) Good stress, bad stress and oxidative stress: insights from anticipatory cortisol reactivity. Psychoneuroendocrinology 38:1698–1708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai J-Z, Lipski J (2010) Diffrential expression of TRPM2 and TRPV4 channels and their potential role in oxidative stress-induced cell death in organotypic hippocampal culture. Neurotoxicology 31:204–214

    Article  CAS  PubMed  Google Scholar 

  • Bai P, Cantó C, Oudart H, Bruyánszki A, Cen Y, Thomas C, Yamamoto H, Huber A, Kiss B, Houtkooper R, Schoonjans K, Schreiber V, Sauve A, Menissier-de Murcia J, Auwerx J (2011) PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab 13:461–468.

  • Berger NA (1985) Poly (ADP-ribose) in the cellular response to DNA damage. Radiat Res 1001:4–15

    Article  Google Scholar 

  • Boksa P, Krishnamurthy A, Brooks W (1995) Effects of a period of asphyxia during birth on spatial learning in the rat. Pediatr Res 37:489–496

    Article  CAS  PubMed  Google Scholar 

  • Bruick RK (2000) Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc Natl Acad USA 1:97 (16):9082–9087.

  • Burke RE, Macaya A, DeVivo D, Kenyon N, Janec EM (1992) Neonatal hypoxic-ischemic or excitotoxic striatal injury results in a decreased adult number of substantia nigra neurons. Neuroscience 50:559–569

    Article  CAS  PubMed  Google Scholar 

  • Carloni S, Carnevali A, Cimino M, Balduini W (2008) Extended role of necrotic cll death after hypoxia-ischemia-induced neurodegeneration in the neonatal rat. J Pineal Res 44:157–164

    Article  CAS  PubMed  Google Scholar 

  • Chang S, Jiang X, Zhao C, Ferriero DM (2008) Exogenous low dose hydrogen peroxide increases hypoxia-inducible factor-1alpha protein expression and induces preconditioning protection against ischemia in primary cortical neurons. Neurosci Lett 441:134–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Engidawork E, Loidl F, Dell’Anna E, Gony M, Lubec G, Andersson K, Herrera-Marschitz M (1997) Short- and long-term effects of perinatal asphyxia on monoamine, amino acids and glycolysis product levels measured in the basal ganglia of the rat. Dev Brain Res 104:19–30

    Article  CAS  Google Scholar 

  • Chen L, Liu L, Yin J, Luo Y, Huang S (2009) Hydrogen peroxide-induced neuronal apoptosis is associated with inhibition of protein phosphatase 2-A and 5, leading to activation of MAPK pathway. Int J Biochem Cell Biol 41:1284–1295

    Article  CAS  PubMed  Google Scholar 

  • Chong ZZ, Lin S-H, Maiese K (2004) The NAD+ precursor nicotinamide governs neuronal survival during oxidative stress through protein kinase B coupled to FOXO3a and mitochondrial membrane potential. J Cer Blood Flow Metab 24:728–743

    Article  CAS  Google Scholar 

  • Crowley LC, Marfell BJ, Waterhouse NJ (2016) Detection of DNA fragmentation in apoptotic cells by TUNEL. Cold Spring Harb Protoc; doi 10:1101

    Google Scholar 

  • De Torres C, Munell F, Reventos J, Macaya A (1997) Identification of necrotic cell death by TUNEL assay in the hypoxic-ischemic neonatal brain. Neurosci Lett 230:1–4

    Article  PubMed  Google Scholar 

  • Dell’Anna E, Chen Y, Loidl F, Andersson K, Luthman J, Goiny M, Rawal R, Lindgren T, Herrera-Marschitz M (1995) Short-term effects of perinatal asphyxia studied with Fos-immunocytochemistry and in vivo microdialysis in the rat. Exp Neurol 131:279–287

    Article  PubMed  Google Scholar 

  • Dell’Anna E, Chen Y, Engidawork E, Andersson K, Lubec G, Luthman J, Herrera-Marschitz M (1997) Delayed neuronal death following perinatal asphyxia in rat. Exp Brain Res 115:105–115

    Article  PubMed  Google Scholar 

  • Deng W (2010) Neurobiology of injury to the developing brain. Nat Dev Neurology 6:328–336

    Article  Google Scholar 

  • Desagher S, Glowinski J, Premont J (1996) Astrocytes protect neurons from hydrogen peroxide toxicity. J Neurosci 16:2553–2562

    CAS  PubMed  Google Scholar 

  • Desagher S, Glowinski J, Premont J (1997) Pyruvate protects neurons against hydrogen peroxide-induce toxicity. J Neurosci 17:9060–9067

    CAS  PubMed  Google Scholar 

  • Douglas-Escobar M, Weiss MD (2015) Hypoxic-ischemic encephalopathy: a review for the clinician. JAMA Pediatr 169:397–403.

  • Duchen MR, Leyssens A, Crompton M (1998) Transient mitochondrial depolarizations reflect focal sarcoplasmic reticular calcium release in single rat cardiomyocytes. J Cell Biol 142:975–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards A, Mehmet H (2008) Apoptosis in perinatal hypoxic-ischaemic cerebral damage. Neuropathol Appl Neurobiol 22(6):494–498

    Article  Google Scholar 

  • Engidawork E, Chen Y, Dell’Anna E, Goiny M, Lubec G, Andersson K, Herrera-Marschitz M (1997) Effects of perinatal asphyxia on systemic and intracerebral glycolysis metabolism and pH in the rat. Exp Neurol 145:390–396

    Article  CAS  PubMed  Google Scholar 

  • Ezquer ME, Valdez SR, Seltzer AM (2006) Inflammatory responses of the substantia nigra after acute hypoxia in neonatal rats. Exp Neurol 197:391–398

    Article  CAS  PubMed  Google Scholar 

  • Feeney CJ, Frantseva MV, Carlen PL, Pennefather PS, Shulyakova N, Shniffr C, Mills LR (2008) Vulnerability of glial cells to hydrogen peroxide in cultured hippocampal slices. Brain Res 1198:1–15

    Article  CAS  PubMed  Google Scholar 

  • Ferriero DM (2001) Oxidant mechanisms in neonatal hypoxia-ischemia. Dev Neurosci 23:198–202

    Article  CAS  PubMed  Google Scholar 

  • Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labelling of nuclear DNA fragmentation. J Cell Biol 119:493–501

    Article  CAS  PubMed  Google Scholar 

  • Gidday JM (2006) Cerebral preconditioning and ischemic tolerance. Nature Rev 7:437

    Article  CAS  Google Scholar 

  • Gilland E, Puka-Sundvall M, Hillered L, Hagberg H (1998) Mitochondrial function and energy metabolism after hypoxia-ischemia in the immature rat brain: involvement of NMDA-receptors. J Cer Blood Flow Metab 18:297–304

    Article  CAS  Google Scholar 

  • Gomez-Urquijo SM, Hokfelt T, Ubink R, Lubec G, Herrera-Marschitz M (1999) Neurocircuitries of the basal ganglia studied in organotypic cultures: focus on tyrosine hydroxylase, nitric oxide synthase and neuropeptide immunocytochemistry. Neuroscience 94:1133–1151

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Flores A, Aguilar-Quesada R, Siles E, Pozo S, Rodriguez-Lara MI, Lopez-Jimenez L, Lopez-Rodriguez M, Peralta-Leal A, Villar D, Martin-Oliva D, del Peso L, Berra E, Oliver FJ (2014) Interaction between PARP-1 and HIF-2alpha in the hypoxic response. Oncogene 33:891–898

    Article  CAS  PubMed  Google Scholar 

  • Griffiths EJ, Halestrap AP (1993) Protection by cyclosporine A of ischemia/reperfusion-induced damage in isolated rat hearts. J Mol Cell Cardiol 25:1461–1469

    Article  CAS  PubMed  Google Scholar 

  • Hagberg H, Edwards AD, Groenendaal F (2016) Perinatal brain damage: the term infant. Neurobiol Dis 92:102–112

    Article  PubMed  PubMed Central  Google Scholar 

  • Herrera-Marschitz M, Ungerstedt U (1984) Evidence that apomorphine and pergolide induce rotation in rats by different actions on D1 and D3 receptor sites. Eur J Pharmacol 98:165–176

    Article  CAS  PubMed  Google Scholar 

  • Herrera-Marschitz M, Morales P, Leyton L, Bustamante D, Klawitter V, Espina-Marchant P, Allende C, Lisboa F, Cunich G, Jara-Cavieres A, Neira T, Gutierrez-Hernandez MA, Gonzalez-Lira V, Simola N, Schmitt A, Morelli M, Andrew Tasker R, Gebicke-Haerter PJ (2011) Perinatal asphyxia: current status and approaches towards neuroprotective strategies, with focus on sentinel proteins. Neurotox Res 19:603–627

    Article  CAS  PubMed  Google Scholar 

  • Herrera-Marschitz M, Neira-Pena T, Rojas-Mancilla E, Espina-Marchant P, Esmar D, Perez R, Munoz V, Gutierrez-Hernandez MA, Rivera B, Simola N, Bustamante D, Morales P, Gebicke-Haerter PJ (2014) Perinatal asphyxia: CNS development and deficits with delayed onset. Front Neurosci 8:1–1

    Article  Google Scholar 

  • Hoeger H, Engelmann M, Bernet G, Seidl R, Bubna-Littitz H, Mosgoeller W, Lubec B, Lubec G (2000) Long term neurological and behavioral effects of graded perinatal asphyxia in the rat. Life Sci 66:947–962

    Article  CAS  PubMed  Google Scholar 

  • Hong SJ, Dawson TM, Dawson VL (2004) Nuclear and mitochondrial conversations in cell death: PARP-1 and AIF signalling. TIPS 25:259–264

    CAS  PubMed  Google Scholar 

  • Hwang J-J, Choi S-Y, Koh J-Y (2002) The role of NADPH oxidase, neuronal nitric oxide synthase and poly(ADP ribose) polymerase in oxidative neuronal death induced in cortical cultures by brain-derived neurotrophic factor and neurotrophin-4/5. J Neurochem 82:894–902

    Article  CAS  PubMed  Google Scholar 

  • Ikeda T, Mishima K, Yoshikawa T, Iwasaki K, Fuijiwara M, Xia YX, Ikenoue T (2001) Selective and long-term learning impairment following neonatal hypoxic-ischemic brain insult in rats. Behav Brain Res 118:17–25

    Article  CAS  PubMed  Google Scholar 

  • Jendrach M, Mai S, Pohl S, Voeth M, Bereiter-Hahn J (2008) Short- and long-term alterations of mitochondrial morphology, dynamics and mtDNA after transient oxidative stress. Mithochondrion 8:293–304

    Article  CAS  Google Scholar 

  • Jiang X, Mu D, Manabat C, Koshy AA, Christen S, Tauber MG, Vexler ZS, Ferreiro DM (2004) Different vulnerability of immature murine neurons to oxygen-glucose deprivation. Exp Neurol 190:224–232

  • Johnston M, Hoon A (2000) Possible mechanisms in infants for selective basal ganglia damage from asphyxia, kernicterus, or mitochondrial encephalopathies. J Child Neurol 15(9):588–591

    Article  CAS  PubMed  Google Scholar 

  • Kauppinen TM, Swanson RA (2007) The role of poly(ADP-ribose) polymerase-1 in CNS disease. Neurosci 147:1267–1272

    Article  Google Scholar 

  • Kauppinen TM, Suh SW, Higashi Y, Berman AE, Escartin C, Won SJ, Wang C, Cho SH, Gan L, Swanson RA (2011) Poly(ADP-ribose)polymerase-1 modulates microglial esponses to amyloid B. J Neuroinflammation 8:152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ke Q, Costa M (2006) Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 70:1469–14680

    Article  CAS  PubMed  Google Scholar 

  • Klawitter V, Morales P, Johansson S, Bustamante D, Goiny M, Gross J, Luthman J, Herrera-Marschitz M (2005) Effect of perinatal asphyxia on cell survival, neuronal phenotype and neurite growth evaluated with organotypic triple cultures. Amino Acids 28:149–155

    Article  CAS  PubMed  Google Scholar 

  • Klawitter V, Morales P, Bustamante D, Gomez-Urquijo S, Hökfelt T, Herrera-Marschitz M (2007) Neuronal plasticity of basal ganglia following perinatal asphyxia: neuroprotection by nicotinamide. Exp Brain Res 180:139–152

    Article  CAS  PubMed  Google Scholar 

  • Krasnikov BF, Kuzminova AE, Zorov DB (1997) The Ca2+-induced pore opening in mitochondria energized by succinate-ferricyanide electron transport. FEBS Lett 419:137–140

    Article  CAS  PubMed  Google Scholar 

  • Labat-Moleur F, Guillermet C, Lorimier P, Robert C, Lantuejoul S, Bramilla E, Negoescu A (1998) TUNEL apoptotic cell detection in tissue sections: critical evaluation and improvement. J Histochem Cytochem 46:327–334

    Article  CAS  PubMed  Google Scholar 

  • Low JA (2004) Determining the contribution of asphyxia to brain damage in the neonate. J Obstet Gynaecol Res 30:276–286

    Article  PubMed  Google Scholar 

  • Luo X, Kraus WL (2011) On PAR with PARP: cellular stress signaling through poly (ADP-ribose) and PARP-1. Genes Dev 26:417–432

    Article  Google Scholar 

  • Marriott AL, Rojas-Mancilla E, Morales P, Herrera-Marschitz M, Tasker RA (2016) Models of progressive neurological dysfunction originating early in life. Prog Neurobiol. doi:10.1016/j.pneurobio.2015.10.001

  • Martin-Oliva D, Aguilar R, Ovalle F, Muñoz J, Martinez R, García del Moral R, Ruiz J, Villuendas R, Piris M, Oliver F (2006) Inhibition of poly(ADP-ribose) polymerase modulates tumor-related gene expression, including hypoxia inducible factor-1 activation during skin carcinogenesis. Cancer Res 66(11):5744–5766

    Article  CAS  PubMed  Google Scholar 

  • Mattson M (2007) Mitochondrial regulation of neuronal plasticity. Neurochem Res 32(4–5):707–715

    Article  CAS  PubMed  Google Scholar 

  • Matyash V, Kettenmann H (2010) Heterogeneity in astrocyte morphology and physiology. Brain Res Rev 63:2–10

    Article  CAS  PubMed  Google Scholar 

  • McQuillen PS, Sheldon RA, Shatz CJ, Ferriero DM (2003) Selective vulnerability of subplate neurons after early neonatal hypoxi-ischemia. J Neurosci 23:3308–3315

    CAS  PubMed  Google Scholar 

  • Mischel RE, Kim YS, Sheldon RA, Ferriro DM (1997) Hydrogen peroxide is selectively toxic to immature murine neurons in vitro. Neurosci Lett 231:17–20

    Article  CAS  PubMed  Google Scholar 

  • Moncada S, Bolaños J (2006) Nitric oxide, cell bioenergetics and neurodegeneration. J Neurochem 97(6):1676–1689

    Article  CAS  PubMed  Google Scholar 

  • Morales P, Reyes P, Klawitter V, Huaiquín P, Bustamante D, Fiedler J, Herrera-Marschitz M (2005) Effects of perinatal asphyxia on cell proliferation and neuronal phenotype evaluated with organotypic hippocampal cultures. Neuroscience 135:421–431

    Article  CAS  PubMed  Google Scholar 

  • Morales P, Fiedler JL, Andres S, Berrios C, Huaiquin P, Bustamante D, Cardenas S, Parra E, Herrera-Marschitz M (2008) Plasticity of hippocampus following perinatal asphyxia: effects on postnatal apoptosis and neurogenesis. J Neurosci Res 86:2650–2662

    Article  CAS  PubMed  Google Scholar 

  • Morales P, Simola N, Bustamante D, Lisboa F, Fiedler J, Gebicke-Haerter P, Morelli M, Tasker RA, Herrera-Marschitz M (2010) Nicotinamide prevents the effect of perinatal asphyxia on apoptosis, non-spatial working memory and anxiety in rats. Exp Brain Res 202:1–14

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee SK, Klidman LK, Yasharel R, Adams JD Jr (1997) Increased brain NAD prevents neuronal apoptosis in vivo. Eur J Pharmacol 330:27–34

    Article  CAS  PubMed  Google Scholar 

  • Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. TINS 26(10):523–530

    CAS  PubMed  Google Scholar 

  • Neira-Peña T, Rojas-Mancilla E, Munoz-Vio V, Perez R, Gutierrez-Hernandez M, Bustamante D, Morales P, Hermoso MA, Gebicke-Haerter P, Herrera-Marschitz M (2015) Perinatal asphyxia leads to PARP-1 overactivity, p65 translocation, IL-1β and TNF-α overexpression, and apoptotic-like cell death in mesencephalon of neonatal rats: prevention by systemic neonatal nicotinamide administration. Neurotox Res 27(4):453–465

    Article  PubMed  PubMed Central  Google Scholar 

  • Northington FJ, Graham EM, Martin LJ (2005) Apotosis in perinatal hypoxic-ischemic brain injury: how important is it and should it be inhibited? Brain Res Rev 50:244–257

    Article  CAS  PubMed  Google Scholar 

  • Orrenius S, Nicotera P, Zhivotovsky B (2011) Cell death mechanisms and their implications in toxicology. Toxicol Sci 119:3–19

    Article  CAS  PubMed  Google Scholar 

  • Østergaard K, Zimmer F (1995) Organotypic slice cultures of the rat striatum: an immunocytochemical, histochemical and in situ hybridization study of somatostatin, neuropeptide Y, nicotinamide adenine dinucleotide phosphate-diaphorase, and enkephalin. Exp Brain Res 103(1):70–84

    Article  PubMed  Google Scholar 

  • Palmer C, Brucklacher RM, Christensen MA, Vannucci RC (1990) Carbohydrate and energy metabolism during the evolution of hypoxic-ischemic brain damage in the immature rat. J Cereb Blood Flow Metab 10:227–235

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Pinzón MA, Xu GP, Born J, Lorenzo J, Busto R, Rosenthal M, Sick TJ (1999) Cytochrome C is released from mitochondria into the cytosol after cerebral anoxia or ischemia. Journal of cerebral blood flow metabolism 19(1):39–43

    Article  PubMed  Google Scholar 

  • Pieper AA, Walles T, Wei G, Clements EE, Verma A, Snyder SH, Zweier JL (2000) Myocardial postischemic injury is reduced by polyADPribose plymerase-1 gene disruption. Mol Med 6:271–282

  • Plenz D, Kitai ST (1996a) Organotypic cortex-striatum-mesencephalon cultures: the nigro-striatal pathway. Neurosci Lett 209:177–180

  • Plenz D, Kitai ST (1996b) Generation of high frequency oscillations in cortical circuits of somatosensory cortex cultures. J Neurophysiol 76:4001–4005

  • Plenz D, Herrera-Marschitz M, Kitai ST (1998) Morphological organization of the globus pallidussubthalamic nucleus system studied in organotypic cultures. J Comp Neurol 397:437–457

  • Rehncrona S, Folbergrova J, Smith D, Siesgo B (1980) Influence of complete and pronounced incomplete cerebral ischemia and subsequent recirculation on cortical concentrations of oxidized and reduced glutathione in the rat. J Neurochem 34(3):477–486

    Article  CAS  PubMed  Google Scholar 

  • Saito A, Maier CM, Narasimhan P, Nishi T, Song YS, Yu F, Liu J, Lee SY, Nito C, Kamada H, Dodd RL, Hsieh LB, Hassid B, Kim EE, González M, Chan PH (2005) Oxidative stress and neuronal death/survival signaling in cerebral ischemia. Mol Neurobiol 31(1–3):105–116

    Article  CAS  PubMed  Google Scholar 

  • Schraufstatter IU, Hyslop PA, Hinshaw DB, Spragg RG, Sklar LA, Cochrane CH (1986) Hydrogen peroxide-induced injury of cells and its prevention by inhibitors of poly(ADP-ribose) polymerase. PNAS USA 83:4908–4912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sies H (2017) Hydrogen peroxide as a central redox signalling molecule in physiological oxidative stress: oxidative eustress. Redox Biol 11:613–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skulachev VP (1996) Role of uncoupled and non-coupled oxidation in maintenance of safely low levels of oxygen and its one-electron reductants. Q Rev Biophys 29:169–202

    Article  CAS  PubMed  Google Scholar 

  • Smith CM, Chen Y, Sullivan ML, Kochanek PM, Clarck RSB (2011) Autophagy in acute brain injury: feast, famine, or folly? Neurobiol Dis 43:52–59

    Article  CAS  PubMed  Google Scholar 

  • Sowter HM, Ratcliffe PJ, Watson P, Greenberg HH, Harris AL (2001) HIF-dependent regulation of hypoxic induction of cell death factors BNIP3 and NIX in human tumors. Cancee Res 61:6669–6673

  • Ungerstedt U (1971) Stereotaxic mapping of the monoamine pathway in the rat brain. Acta Physiol Scand Suppl 367:1–48

    Article  CAS  PubMed  Google Scholar 

  • Van de Berg WD, Schmitz C, Steinbusch HWM, Blanco CE (2002) Perinatal asphyxia induced neuronal loss by apotosis in the neonatal rat striatum: a combined TUNEL and stereological study. Exp Neurol 174:29–36

    Article  PubMed  Google Scholar 

  • Vangeison G, Carr D, Federoff H, Rempe D (2008) The good, the bad, and the cell type-specific roles of hypoxia inducible factor-1 alpha in neurons and astrocytes. J Neurosci 28(8):1988–1993

    Article  CAS  PubMed  Google Scholar 

  • Vannucci RC, Towfighi J, Vannucci SJ (1998) Hypoxic preconditioning and hypoxic-ischemic brain damage in the immature rat: pathologic and metabolic correlates. J Neurochem 71:1215–1220

    Article  CAS  PubMed  Google Scholar 

  • Wallin C, Puka-Sundvall M, Hagberg H, Weber SG, Sandberg M (2000) Alterations in glutathione and amino acid concentrations after hypoxia-ischemia in the immature rat brain. Dev Brain Res 125:51–60

    Article  CAS  Google Scholar 

  • Wang X, Michaelis EK (2010) Selective neuronal vulnerability to oxidative stress in the brain. Front Aging Neurosci 2(12):1–13

    Google Scholar 

  • Weis SN, Toniazzo AP, Ander BP, Zhan X, Caraga M, Ashwood P, Wyse ATS, Netto CA, Sharp FR (2014) Autophagy in the brain of neonates following hypoxia-ischemia shows sex- and region-specific effects. Neurosci 256:201–209

    Article  CAS  Google Scholar 

  • Whittemore ER, Loo D, Cotman C, Carl W (1994) Exposure to hydrogen peroxide induces cell death via apoptosis in cultured rat cortical neurons. Neuroreport 5(12):1485–1488

    Article  CAS  PubMed  Google Scholar 

  • Whittemore ER, Loo DT, Watt JA, Cotman CW (1995) A detailed analysis of hydrogen peroxide-induced cell death in primary neuronal culture. Neuroscience 67:921–932

    Article  CAS  PubMed  Google Scholar 

  • Wold S, Sjostrom M, Carlson R, Lundstedt T, Hellberg S, Skagerberg B, Wikstrom C, Ohman J (1986) Multivariate design. Analytica Chim Acta 191:17–32

    Article  CAS  Google Scholar 

  • Xu L, Voloboueva LA, Ouyang Y, Emery J, Giffard R (2009) Overexpression of mitochondrial HSP70/HSP75 in rat brain protects mitochondria, reduces oxidative stress, and protects from focal ischemia. J Cereb Blood Flow Metab 29:365–374

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Klaidman LK, Nalbandian A, Oliver J, Chang ML, Chan PH, Adams Jr JD (2002) The effect of nicotinamide on enrgy metabolism following transient focal cerebral ischemia in Wistar rats. Neurosci Lett 333:91–94

  • Yin W, Signore AP, Iwai N, Cao G, Gao Y, Chen J (2008) Rapidly increased neuronal mitochondrial biogenesis after hypoxic-ischemic brain injury. Stroke 39:3057–3063

    Article  PubMed  PubMed Central  Google Scholar 

  • Yue X, Mehmet H, Penrice J, Cooper C, Cady E, Wyatt JS, Reynolds EOR, Edwards AD, Squie MV (1997) Apoptosis and necrosis in the newborn piglet brain following transient cerebral hypoxia-ischaemia. Neuropath Appl Neurobiol 23:16–25

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to than the following contract grant sponsors: FONDECYT-Chile; Millenium Institute Initiative (BNI P09-015-F) and MHMarschitz Foundation, Sweden. RPL (#21130739), CLR (#21140281), ATB (#21151232) and EP (#21171433) are CONICYT-Chile fellows. VVM was a MECESUP-Chile fellow (UCH0704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Herrera-Marschitz.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest on any section of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez-Lobos, R., Lespay-Rebolledo, C., Tapia-Bustos, A. et al. Vulnerability to a Metabolic Challenge Following Perinatal Asphyxia Evaluated by Organotypic Cultures: Neonatal Nicotinamide Treatment. Neurotox Res 32, 426–443 (2017). https://doi.org/10.1007/s12640-017-9755-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-017-9755-4

Keywords

Navigation