Skip to main content

Advertisement

Log in

A Review of Air Quality Modeling

  • Review Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

Air quality models (AQMs) are useful for studying various types of air pollutions and provide the possibility to reveal the contributors of air pollutants. Existing AQMs have been used in many scenarios having a variety of goals, e.g., focusing on some study areas and specific spatial units. Previous AQM reviews typically cover one of the forming elements of AQMs. In this review, we identify the role and relevance of every component for building AQMs, including (1) the existing techniques for building AQMs, (2) how the availability of the various types of datasets affects the performance, and (3) common validation methods. We present recommendations for building an AQM depending on the goal and the available datasets, pointing out their limitations and potentials. Based on more than 40 works on air quality, we concluded that the main utilized methods in air pollution estimation are land-use regression (LUR), machine learning, and hybrid methods. In addition, when incorporating LUR methods with traffic variables, it gives promising results; however, when using kriging or inverse distance weighting techniques, the monitoring stations measurements of air pollution data are enough to have good results. We aim to provide a short manual for people who want to build an AQM given the constraints at hands such as the availability of datasets and technical/computing resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. M. Kampa and E. Castanas, Human health effects of air pollution. Environ. Pollut. 151(2) (2008) 362-367.

    Google Scholar 

  2. B. Karimi and S Samadi, Mortality and hospitalizations due to cardiovascular and respiratory diseases associated with air pollution in Iran: a systematic review and meta-analysis. Atmos. Environ. 198 (2019) 438-447.

    ADS  Google Scholar 

  3. N. Künzli, M. Jerrett, W.J. Mack, B. Beckerman, L. Labree, F. Gillil, D. Thomas, J. Peters and H.N. Hodis, Ambient air pollution and atherosclerosis in Los Angeles. Environ Health Perspect. 113 (2005) 201–206.

    Google Scholar 

  4. D.E. Schraufnagel, J.R. Balmes, C.T. Cowl, S. De Matteis, S.H. Jung, K. Mortimer and G.D. Thurston, Air pollution and noncommunicable diseases: a review by the Forum of International Respiratory Societies’ Environmental Committee, Part 2: air pollution and organ systems. Chest, 155(2) (2019) 417-426.

    Google Scholar 

  5. H. Chen, J. Kwong, R. Copes, K. Tu, A. van Donkelaar, P. Hystad, P. Villeneuve, R. Martin, B. Murray, B. Jessiman and A. Kopp, Living near major roads and the incidence of dementia, Parkinson’s disease and multiple sclerosis in Ontario, Canada: population-based study. In ISEE conference abstracts (2016).

  6. J.G. Miller, J.S. Gillette, E.M. Manczak, K. Kircanski and I.H. Gotlib, Fine particle air pollution and physiological reactivity to social stress in adolescence: the moderating role of anxiety and depression. Psychosom. Med. 81 (2019) 641-648.

    Google Scholar 

  7. F. Vadillo-Ortega, A. Osornio-Vargas, M.A. Buxton, B.N. Sánchez, L. Rojas-Bracho, M. Viveros-Alcaráz, M. Castillo-Castrejón, J. Beltrán-Montoya, D.G. Brown and M.S. O’Neill, Air pollution, inflammation and preterm birth: a potential mechanistic link. Med. Hypotheses, 82(2) (2014) pp. 219-224.

    Google Scholar 

  8. N. Hudda and S.A. Fruin, International airport impacts to air quality: size and related properties of large increases in ultrafine particle number concentrations. Environ. Sci. Technol. 50(7) (2016) 3362-3370.

    ADS  Google Scholar 

  9. P.H. Ryan and G.K. LeMasters, A review of land-use regression models for characterizing intraurban air pollution exposure. Inhalation Toxicol. 19(sup1) (2007) 127-133.

    Google Scholar 

  10. G. Hoek, R. Beelen, K. De Hoogh, D. Vienneau, J. Gulliver, P. Fischer and D Briggs, A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos. Environ. 42(33) (2008) 7561-7578.

    ADS  Google Scholar 

  11. Y. Zhang, M. Bocquet, V. Mallet, C. Seigneur and A. Baklanov, Real-time air quality forecasting, part I: History, techniques, and current status. Atmos. Environ. 60 (2012) 632-655.

    ADS  Google Scholar 

  12. Y. Zhang, M. Bocquet, V. Mallet, C. Seigneur and A. Baklanov, Real-time air quality forecasting, part II: State of the science, current research needs, and future prospects. Atmos. Environ. 60 (2012) 656-676.

    ADS  Google Scholar 

  13. D.J. Briggs, S. Collins, P. Elliott, P. Fischer, S. Kingham, E. Lebret, K. Pryl, H. Van Reeuwijk, K. Smallbone and A. Van Der Veen, Mapping urban air pollution using GIS: a regression-based approach. Int. J. Geogr. Inf. Sci. 11(7) (1997) 699-718.

    Google Scholar 

  14. S. Bertazzon, M. Johnson, K. Eccles and G.G. Kaplan, Accounting for spatial effects in land use regression for urban air pollution modeling. Spatial Spatio-Temporal Epidemiol. 14 (2015) 9-21.

    Google Scholar 

  15. Z. Ross, M. Jerrett, K. Ito, B. Tempalski and G.D. Thurston, A land use regression for predicting fine particulate matter concentrations in the New York City region. Atmospheric Environ. 41(11) (2007) 2255-2269.

    ADS  Google Scholar 

  16. Z. Ross, P.B. English, R. Scalf, R. Gunier, S. Smorodinsky, S. Wall and M. Jerrett, Nitrogen dioxide prediction in Southern California using land use regression modeling: potential for environmental health analyses. J. Exposure Sci. Environ. Epidemiol. 16(2) (2006) 106.

    Google Scholar 

  17. J.G. Su, M. Jerrett, B. Beckerman, M. Wilhelm, J.K. Ghosh and B. Ritz, Predicting traffic-related air pollution in Los Angeles using a distance decay regression selection strategy. Environ. Res. 109(6) (2009) 657-670.

    ADS  Google Scholar 

  18. J.H. Lee, C.F. Wu, G. Hoek, K. de Hoogh, R. Beelen, B. Brunekreef and C.C. Chan, Land use regression models for estimating individual NOx and NO2 exposures in a metropolis with a high density of traffic roads and population. Sci. Total Environ. 472 (2014) 1163-1171.

    ADS  Google Scholar 

  19. L. Zhai, B. Zou, X. Fang, Y. Luo, N. Wan and S. Li, Land use regression modeling of PM2. 5 concentrations at optimized spatial scales. Atmosphere 8(1) (2016) 1.

  20. S. Basu, K. Kumbier, J.B. Brown and B Yu, Iterative random forests to discover predictive and stable high-order interactions. Proc. Natl. Acad. Sci. (2018) 201711236.

  21. J.B. Ordieres, E.P. Vergara, R.S. Capuz and R.E. Salazar, Neural network prediction model for fine particulate matter (PM2. 5) on the US–Mexico border in El Paso (Texas) and Ciudad Juárez (Chihuahua). Environ. Model. Softw. 20(5) (2005) 547-559.

  22. W. Xu, C. Cheng, D. Guo, X. Chen, H. Yuan, R. Yang and Y. Liu, PM2. 5 Air Quality Index Prediction Using an Ensemble Learning Model. In International Conference on Web-Age Information Management (2014) (pp. 119-129). Springer, Cham.

  23. W. Jiang, Y. Wang, M.H. Tsou and X. Fu, Using social media to detect outdoor air pollution and monitor air quality index (AQI): a geo-targeted spatiotemporal analysis framework with Sina Weibo (Chinese Twitter). PloS One 10(10) (2015) e0141185.

    Google Scholar 

  24. G.A. Grell, S.E. Peckham, R. Schmitz, S.A. McKeen, G. Frost, W.C. Skamarock and B. Eder, Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 39(37) (2005) 6957-6975.

    ADS  Google Scholar 

  25. X. Xi, Z. Wei, R. Xiaoguang, W. Yijie, B. Xinxin, Y. Wenjun and D. Jin, A comprehensive evaluation of air pollution prediction improvement by a machine learning method. In 2015 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI) (2015) (pp. 176-181). IEEE.

  26. R. Yu, Y. Yang, L. Yang, G. Han and O.A. Move, Raq–a random forest approach for predicting air quality in urban sensing systems. Sensors 16(1) (2016) 86.

    Google Scholar 

  27. C. Brokamp, R. Jandarov, M.B. Rao, G. LeMasters and P. Ryan, Exposure assessment models for elemental components of particulate matter in an urban environment: A comparison of regression and random forest approaches. Atmos. Environ. 151 (2017) 1-11.

    ADS  Google Scholar 

  28. D. Wilton, A. Szpiro, T. Gould and T. Larson, Improving spatial concentration estimates for nitrogen oxides using a hybrid meteorological dispersion/land use regression model in Los Angeles, CA and Seattle, WA. Sci. Total Environ. 408(5) (2010) 1120-1130.

    ADS  Google Scholar 

  29. P.E. Benson, A review of the development and application of the CALINE3 and 4 models. Atmos. Environ. Part B. Urban Atmos. 26(3) (1992) 379-390.

    Google Scholar 

  30. Y. Zheng, F. Liu and H.P. Hsieh, U-Air: When urban air quality inference meets big data. In Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining (2013) (pp. 1436-1444). ACM.

  31. Y. Zheng, X. Yi, M. Li, R. Li, Z. Shan, E. Chang and T. Li, Forecasting fine-grained air quality based on big data. In Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining (2015) (pp. 2267-2276). ACM.

  32. L. Li, F. Lurmann, R. Habre, R. Urman, E. Rappaport, B. Ritz, J.C. Chen, F.D. Gilliland and J. Wu, Constrained mixed-effect models with ensemble learning for prediction of nitrogen oxides concentrations at high spatiotemporal resolution. Environ. Sci. Technol. 51(17) (2017) 9920-9929.

    ADS  Google Scholar 

  33. T. Fontes and N. Barros, Interpolation of air quality monitoring data in an urban sensitive area (2010).

  34. Y. Ramos, B. St-Onge, J.P. Blanchet and A. Smargiassi, Spatio-temporal models to estimate daily concentrations of fine particulate matter in Montreal: Kriging with external drift and inverse distance-weighted approaches. J Exposure Sci. Environ. Epidemiol. 26(4) (2016), 405.

    Google Scholar 

  35. L.O. Rivera-González, Z. Zhang, B.N. Sánchez, K. Zhang, D.G. Brown, L. Rojas-Bracho, A. Osornio-Vargas, F. Vadillo-Ortega and M.S. O’Neill, An assessment of air pollutant exposure methods in Mexico City, Mexico. J. Air Waste Manag. Assoc. 65(5) (2015) 581-591.

    Google Scholar 

  36. Y. Guo, N. Feng, S.A. Christopher, P. Kang, F.B. Zhan and S. Hong, Satellite remote sensing of fine particulate matter (PM2. 5) air quality over Beijing using MODIS. Int. J. Remote Sens. 35(17) (2014) 6522-6544.

  37. W. Sun, H. Zhang, A. Palazoglu, A. Singh, W. Zhang and S. Liu, Prediction of 24-hour-average PM2. 5 concentrations using a hidden Markov model with different emission distributions in Northern California. Sci. Total Environ. 443 (2013) 93-103.

    ADS  Google Scholar 

  38. D. Kang, R. Mathur and S. Trivikrama Rao, Assessment of bias-adjusted PM 2.5 air quality forecasts over the continental United States during 2007. Geosci. Model Dev. 3(1) (2010) 309-320.

  39. X. Yang, Y. Zheng, G. Geng, H. Liu, H. Man, Z. Lv, K. He and K. de Hoogh, Development of PM2. 5 and NO2 models in a LUR framework incorporating satellite remote sensing and air quality model data in Pearl River Delta region, China. Environ. Pollut. 226 (2017) pp.143-153.

    Google Scholar 

  40. C. Liu, B.H. Henderson, D. Wang, X. Yang and Z.R. Peng, A land use regression application into assessing spatial variation of intra-urban fine particulate matter (PM2. 5) and nitrogen dioxide (NO2) concentrations in City of Shanghai, China. Sci. Total Environ. 565 (2016) 607-615.

    ADS  Google Scholar 

  41. K.C. Lam, S.L. Ng, W.C. Hui and P.K. Chan, Environmental quality of urban parks and open spaces in Hong Kong. Environmental Monit. Assess. 111(1-3) (2005) 55-73.

    Google Scholar 

  42. H. Guo, T. Cheng, X. Gu, H. Chen, Y. Wang, F. Zheng and K. Xiang, Comparison of four ground-level PM2. 5 estimation models using parasol aerosol optical depth data from China. Int. J. Environ. Res. Public Health, 13(2) (2016), 180.

  43. Y. Lin, Y.Y. Chiang, F. Pan, D. Stripelis, J.L. Ambite, S.P. Eckel and R. Habre, Mining public datasets for modeling intra-city PM2. 5 concentrations at a fine spatial resolution. In Proceedings of the 25th ACM SIGSPATIAL international conference on advances in geographic information systems (2017) (p. 25). ACM.

  44. Y. Lin, N. Mago, Y. Gao, Y. Li, Y.-Y. Chiang, C. Shahabi and J.L. Ambite, Exploiting spatiotemporal patterns for accurate air quality forecasting using deep learning. In Proceedings of the 26th ACM SIGSPATIAL international conference on advances in geographic information systems (2018) (pp. 359-368).

  45. J. Jokar Arsanjani, M. Helbich, M. Bakillah, J. Hagenauer and A. Zipf, Toward mapping land-use patterns from volunteered geographic information. Int. J. Geogr. Inf. Sci. 27(12) (2013) 2264-2278.

    Google Scholar 

  46. D.K. Moore, M. Jerrett, W.J. Mack and N. Künzli, A land use regression model for predicting ambient fine particulate matter across Los Angeles, CA. J. Environ. Monit. 9(3) (2007) 246-252.

    Google Scholar 

  47. L. Li, J. Wu, N. Hudda, C. Sioutas, S.A. Fruin and R.J. Delfino, Modeling the concentrations of on-road air pollutants in southern California. Environ. Sci. Technol. 47(16) (2013) 9291-9299.

    ADS  Google Scholar 

  48. S.Y. Kim, L. Sheppard and H. Kim, Health effects of long-term air pollution: influence of exposure prediction methods. Epidemiology (2009) 442-450.

  49. Z. Ross, K. Ito, S. Johnson, M. Yee, G. Pezeshki, J.E. Clougherty, D. Savitz and T. Matte, Spatial and temporal estimation of air pollutants in New York City: exposure assignment for use in a birth outcomes study. Environ. Health, 12(1) (2013) 51.

    Google Scholar 

  50. A A. Szpiro, C.J. Paciorek and L. Sheppard, Does more accurate exposure prediction necessarily improve health effect estimates? Epidemiology (Cambridge, Mass.)22(5) (2011) 680.

  51. J. Seo, D.S.R. Park, J.Y. Kim, D. Youn, Y.B. Lim and Y. Kim, Effects of meteorology and emissions on urban air quality: a quantitative statistical approach to long-term records (1999–2016) in Seoul, South Korea. Atmos. Chem. Phys. 18(21) (2018) 16121-16137.

    ADS  Google Scholar 

  52. J.A. Kamińska, The use of random forests in modelling short-term air pollution effects based on traffic and meteorological conditions: A case study in Wrocław. J. Environ. Manag. 217 (2018) 164-174.

    Google Scholar 

  53. V.D. Le, T.C. Bui and S.K. Cha, Spatiotemporal deep learning model for citywide air pollution interpolation and prediction. arXiv preprint arXiv:1911.12919 (2019).

  54. J. Xie, Z. Liao, X. Fang, X. Fang, Y. Wang, Y. Zhang and B. Wang, The characteristics of hourly wind field and its impacts on air quality in the Pearl River Delta region during 2013–2017. Atmospheric Res. 227 (2019) 112-124.

    ADS  Google Scholar 

  55. E. Radzka, The Effect of Meteorological Conditions on Air Pollution in Siedlce. J. Ecol. Eng. 21(1) (2020) 97-104.

    Google Scholar 

  56. P. Wang, H. Guo, J. Hu, S.H. Kota, Q. Ying and H. Zhang, Responses of PM2. 5 and O3 concentrations to changes of meteorology and emissions in China. Sci. Total Environ. 662 (2019) 297-306.

    ADS  Google Scholar 

  57. J.S. Irwin, Statistical evaluation of centreline concentration estimates by atmospheric dispersion models. Int. J. Environ. Pollut. 14(1-6) (2000) 28-38.

    Google Scholar 

  58. D.G. Fox, Uncertainty in air quality modeling: a summary of the AMS workshop on quantifying and communicating model uncertainty, Woods Hole, Mass., September 1982. Bull. Am. Meteorol. Soc. 65(1) (1984) 27-36.

  59. R.A. Anthes, Y.-H. Kuo, E.-Y. Hsie, S. Low-Nam and T.W. Bettge, Estimation of skill and uncertainty in regional numerical models. Quart. J. R. Meteorol. Soc. 115 (1989)763–806.

    ADS  Google Scholar 

  60. S.R. Hanna, D.G. Strimaitis and J.C. Chang, Hazard Response Modeling Uncertainty (A Quantitative Method). Volume 2. Evaluation of Commonly Used Hazardous Gas Dispersion Models. SIGMA RESEARCH CORP WESTFORD MA (1993).

    Google Scholar 

  61. M.B. Beck, J.R. Ravetz, L.A. Mulkey and T.O. Barnwell, On the problem of model validation for predictive exposure assessments. Stoch Hydrol. Hydraul. 11 (1997) 229–254.

    ADS  Google Scholar 

  62. J.C. Chang and S.R. Hanna, Air quality model performance evaluation. Meteorol. Atmos. Phys. 87(1-3) (2004) 167-196.

    ADS  Google Scholar 

  63. Y. Zhang and Y. Yang, Cross-validation for selecting a model selection procedure. J. Econom. 187(1) (2015) 95-112.

    MathSciNet  MATH  Google Scholar 

  64. S. Mei, H. Li, J. Fan, X. Zhu and C.R. Dyer, Inferring air pollution by sniffing social media. In Proceedings of the 2014 IEEE/ACM international conference on advances in social networks analysis and mining (2014) (pp. 534-539). IEEE Press.

  65. A. Kumar, I. Gupta, J. Brandt, R. Kumar, A.K. Dikshit and R.S. Patil, Air quality mapping using GIS and economic evaluation of health impact for Mumbai city, India. J. Air Waste Manag. Assoc. 66(5) (2016) 470-481.

    Google Scholar 

  66. W.A. Hassan, Produce an analytical map for the distribution of air pollution by toxic gases in Baghdad city by geographic information system. J. Al-Nahrain Univ. Sci. 21(2) (2018) 81-87.

    MathSciNet  Google Scholar 

  67. A. Kumar, R.S. Patil, A.K. Dikshit and R. Kumar, Air quality assessment using interpolation technique. Environment Asia, 9(2) (2016) 140-149.

    Google Scholar 

  68. M.H. Ehrampoush, S. Jamshidi, M.J. Zare Sakhvidi and M. Miri, A comparison on function of Kriging and inverse distance weighting models in PM10 zoning in urban area. J. Environ. Health Sustain. Dev. 2(4) (2017) 379-387.

    Google Scholar 

  69. C. Lin, Y. Li, Z. Yuan, A.K. Lau, C. Li and J.C. Fung, Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM2. 5. Remote Sens. Environ. 156 (2015) 117-128.

    ADS  Google Scholar 

  70. H.J. Lee, R.B. Chatfield and A.W. Strawa, Enhancing the applicability of satellite remote sensing for PM2. 5 estimation using MODIS deep blue AOD and land use regression in California, United States. Environ. Sci. Technol. 50(12) (2016) 6546-6555.

  71. X. Meng, Q. Fu, Z. Ma, L. Chen, B. Zou, Y. Zhang and W. Xue et al., Estimating ground-level PM10 in a Chinese city by combining satellite data, meteorological information and a land use regression model. Environ. Pollut. 208 (2016) 177-184.

    Google Scholar 

  72. S.A. Fruin, N. Hudda, C. Sioutas and R.J. Delfino, Predictive model for vehicle air exchange rates based on a large, representative sample. Environ. Sci. Technol. 45(8) (2011) 3569-3575.

    ADS  Google Scholar 

  73. N. Hudda, S.P. Eckel, L.D. Knibbs, C. Sioutas, R.J. Delfino and S.A. Fruin, Linking in-vehicle ultrafine particle exposures to on-road concentrations. Atmos. Environ. 59 (2012) 578-586.

    ADS  Google Scholar 

  74. https://hautsdefrance.cci.fr/wp-content/uploads/sites/6/2016/04/Atlas_NPCP_Edition2016.pdf.

  75. https://www.atmo-hdf.fr.

  76. C. Gengembre, Analyse dynamique, en champ proche et à résolution temporelle fine, de l’aérosol submicronique en situation urbaine sous influence industrielle. (Doctoral dissertation). Retrieved from http://www.theses.fr/ with ID 2018DUNK0489 (2018).

  77. D. Nowak and G. Heisler, Air quality effects of urban trees and parks. Research Series Monograph. Ashburn, VA: National Recreation and Parks Association Research Series Monograph. 44 (2010) 1-44.

  78. H.L. Liu and Y S. Shen, The impact of green space changes on air pollution and microclimates: a case study of the Taipei Metropolitan area. Sustainability 6(12) (2014) 8827-8855.

    Google Scholar 

  79. C.E. Catlett, P.H. Beckman, R. Sankaran and K.K. Galvin, Array of things: a scientific research instrument in the public way: platform design and early lessons learned. In Proceedings of the 2nd international workshop on science of smart city operations and platforms engineering (2017) (pp. 26-33). ACM.

Download references

Acknowledgements

This work was supported by the scholarship of Excellence from the National Center for Scientific and Technical Research (CNRST) of Morocco and Université du Littoral Côte d’Opale of Dunkerque, France. We would like to thank Atmo Hauts-de-France for providing us the measurements used in the study case.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaoula Karroum.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karroum, K., Lin, Y., Chiang, YY. et al. A Review of Air Quality Modeling. MAPAN 35, 287–300 (2020). https://doi.org/10.1007/s12647-020-00371-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-020-00371-8

Keywords

Navigation