Skip to main content
Log in

Scattering of terahertz wave by charged spherical particles

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The scattering characteristics of terahertz wave by a spherical particle are studied in this paper. A model, which can uniformly describe the expansion coefficients of uncharged, evenly charged and partially charged conditions, is developed and verified. The results of numerical calculation manifest that the scattering of terahertz wave is enhanced, whenever the particle is evenly or partially charged in the given frequency range, particle radius and the surface charge densities, compared with the uncharged case. Moreover, it is also found that the scattering of terahertz wave is basically monotonously enhanced if the particle is negatively charged; and it is basically non-monotonously enhanced if the particle is positively charged. Besides, the terahertz wave’s 3-D scattering field intensity distributions of uncharged, evenly charged and partially charged conditions are compared. In a word, this study is crucial to discuss the feasibility of terahertz wave communication technology in the complicated environment with charged particles. In addition, the potential application of this study in biomedical field is also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A S Chen, J M Hao, Z P Zhou and K B He Opt. Lett. 25 689 (2000)

    Google Scholar 

  2. D Bivolaru, P M Danehy and J W Lee Opt. Lett. 31 1645 (2006)

    Google Scholar 

  3. P H Kaye, E Hirst, R S Greenaway, Z Ulanowski, E Hesse and P J DeMott Opt. Lett. 33 1545 (2008)

    Google Scholar 

  4. H F Ding, F Nguyen, S A Boppart and G Popescu Opt. Lett. 34 1372 (2009)

    Google Scholar 

  5. F Voit, J Schäfer and A Kienle Opt. Lett. 34 2593 (2009)

    Article  ADS  Google Scholar 

  6. M I Mishchenko, L D Travis and A Macke Appl. Opt. 35 4927 (1996)

    ADS  Google Scholar 

  7. X Y Du and D M Zhao Opt. Lett. 35 1518 (2010)

    Article  ADS  Google Scholar 

  8. S A Khan Indian J. Phys. 88 433 (2014)

  9. P Frisch, J Dorschner, J Geiss, M Greenberg, E Grun and M Landgraf Astrophys J 525 492 (1999)

    Article  Google Scholar 

  10. L Xie, X C Li and X J Zheng Appl. Opt. 49 6756 (2010)

    ADS  Google Scholar 

  11. P K Shukla and A A Mamun Introduction to dusty plasma physics (London: Institute of Physics publishing) (2002)

    Book  Google Scholar 

  12. C F Bohren and J Hunt Canadian J. Phys. 55 1930 (1977)

    Article  ADS  Google Scholar 

  13. J Klacka and M Kocifaj J Quantit Spectrosc Radiat Transf 106 170 (2007)

    Article  ADS  Google Scholar 

  14. H T Al-Hafid, S C Gupta, M Al-Mashhadani and K Buni Third World Telecommun Forum 2371 (1979)

  15. Z Elabdin, M R Islam, O O Khalifa and H E A Raouf PIER M 6 139 (2009)

    Google Scholar 

  16. R A Cheville and D Grischkowsky Opt. Lett. 20 1646 (1995)

    Article  ADS  Google Scholar 

  17. Y Chen, H Liu, Y Deng, D Schauki and M J Fitch Chem. Phys. Lett. 400 357 (2004)

    Article  ADS  Google Scholar 

  18. J O’Hara and D Grischkowsky Opt. Lett. 26 1918 (2001)

    Article  ADS  Google Scholar 

  19. X K Wang, Y Cui, W F Sun, J S Ye and Y Zhang J. Opt. Soc. Am. A 27 2387 (2010)

    Article  ADS  Google Scholar 

  20. S Wang and X C Zhang J. Phys. D: Appl. Phys. 37 R1 (2004)

    Article  ADS  Google Scholar 

  21. M J Fitch and R Osiander Johns Hopkins APL Tech Dig 25 348 (2004)

    Google Scholar 

  22. M Koch Terahertz Frequency Detection and Identification of Materials and Objects NATO Security through Science Series 325 (2007)

  23. J W Ryde Report no. 7831 (Research Laboratories of the General Electric Company Ltd) p. 22 (1941)

  24. E W B Gill Nature 162 568 (1948)

    Article  ADS  Google Scholar 

  25. J Latham Q J R Meteorol Soc 90 91 (1964)

    Article  ADS  Google Scholar 

  26. X Liu Experimental Wind-Sand Flow Physics and Sand Drift Control Engineering (China: Beijing Science Press) (1995)

  27. C F Bohren and D R Huffman Absorption and Scattering of Light by Small Particles, (America: Wiley) (1998)

  28. J S Mathis, W Rumpl, K H Nordsieck Astrophys J 217 425 (1977)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (Grant Nos. 11204140, 61307113, 10904072), and the Qing Lan project of Jiangsu province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Y. Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y.Y., Xie, A.G., Gu, F. et al. Scattering of terahertz wave by charged spherical particles. Indian J Phys 89, 299–305 (2015). https://doi.org/10.1007/s12648-014-0540-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-014-0540-4

Keywords

PACS No.

Navigation