Skip to main content
Log in

Kinetic Modelling of Hydrothermal Lignin Depolymerisation

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Although lignin is one of the most abundant renewable organic materials in the world, it is principally a waste product of the paper industry which is used for the production of heat and power. Hydrothermal lignin depolymerisation aids in facilitating the valorization of lignin in aqueous solutions or suspensions. For the recovery of valuable phenolic products from lignin it is crucial to understand the main reaction pathways of lignin degradation and the reaction kinetics. Batch experiments were carried out for studying the depolymerisation of an enzymatic hydrolysis lignin from spruce wood in near critical water. Phenolic products were extracted from the aqueous phase and quantified via gas chromatography. The main reaction products were grouped (lumped), the main reaction pathways of hydrothermal lignin depolymerisation were discovered and formal kinetic rate coefficients were determined. Optimization of these formal kinetic parameters yielded a satisfying approximation of the experimental yields of phenolic products and describes the most important tendencies over temperature and residence time of solid residue and gas. The model is validated by the comparison with other kinetic studies of the degradation of lignin as well as the decomposition of intermediate phenolics, such as catechols and methoxyphenols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Glasser, W.: Lignin—retrospect and prospect. Gülzower Fachgespräche 31(7), 42–44 (2009)

    Google Scholar 

  2. Puls, J.: Lignin—Verfügbarkeit, Markt und Verwendung: Perspektiven für schwefelfreie Lignine. Gülzower Fachgespräche 31(5), 18–41 (2009)

    Google Scholar 

  3. Liu, Z., Zhang, F.-S.: Effects of various solvents on the liquefaction of biomass to produce fuels and chemical feedstocks. Energy Convers. Manag. 49(12), 3498–3504 (2008)

    Article  Google Scholar 

  4. Cho, J., Chu, S., Dauenhauer, P.J., Huber, G.W.: Kinetics and reaction chemistry for slow pyrolysis of enzymatic hydrolysis lignin and organosolv extracted lignin derived from maplewood. Green Chem. 14(2), 428–439 (2012)

    Article  Google Scholar 

  5. Jegers, H.E., Klein, M.T.: Primary and secondary lignin pyrolysis reaction pathways. Ind. Eng. Chem. Process Design Dev. 24, 173–183 (1985)

    Article  Google Scholar 

  6. Sasaki, Wahyudiono M., Goto, M.: Recovery of phenolic compounds through the decomposition of lignin in near and supercritical water. Chem. Eng. Process. Process Intensif. 47(9–10), 1609–1619 (2008)

    Google Scholar 

  7. Sasaki, Wahyudiono M., Goto, M.: Thermal decomposition of guaiacol in sub- and supercritical water and its kinetic analysis. J. Mater. Cycles Waste Manag. 13, 68–79 (2011)

    Article  Google Scholar 

  8. Lawson, J., Klein, M.: Influence of water on guaiacol pyrolysis. Ind. Eng. Chem. Fundam. 24, 203–208 (1985)

    Article  Google Scholar 

  9. Dorrestijn, E., Mulder, P.: The radical-induced decomposition of 2-methoxyphenol. J. Chem. Soc. Perkin Trans. 2(4), 777–780 (1999)

    Article  Google Scholar 

  10. Dorrestijn, E., Kranenburg, M., Poinsot, D., Mulder, P.: Lignin depolymerization in hydrogen-donor solvents. Holzforschung 53, 611–616 (1999)

    Article  Google Scholar 

  11. Saisu, M., Sato, T., Watanabe, M., Adschiri, T., Arai, K.: Conversion of lignin with supercritical water–phenol mixtures. Energy Fuels 17(4), 922–928 (2003)

    Article  Google Scholar 

  12. McMillen, D.F., Malhotra, R., Chang, S.-J., Nigenda, S.E., John, G.A.S.: Coupling pathways for dihydroxy aromatics during coal pyrolysis and liquefaction. Fuel 83(11–12), 1455–1467 (2004)

    Article  Google Scholar 

  13. Roberts, V.M., Stein, V., Reiner, T., Lemonidou, A., Li, X., Lercher, J.A.: Towards quantitative catalytic lignin depolymerization. Chem. A Eur. J. 17(5), 5939–5948 (2011)

    Article  Google Scholar 

  14. Zhao, C., Kou, Y., Lemonidou, A.A., Li, X., Lercher, J.A.: Hydrodeoxygenation of bio-derived phenols to hydrocarbons using raney-ni and nafion/\(\text{ SiO }_{2}\) catalysts. Chem. Commun. 46, 412–414 (2010)

    Article  Google Scholar 

  15. Zhao, C., He, J., Lemonidou, A.A., Li, X., Lercher, J.A.: Aqueous-phase hydrodeoxygenation of bio-derived phenols to cycloalkanes. J. Catal. 280(5), 8–16 (2011)

    Article  Google Scholar 

  16. Zhao, C., Lercher, J.A.: Selective hydrodeoxygenation of lignin-derived phenolic monomers and dimers to cycloalkanes on Pd/C and HZSM-5 catalysts. ChemCatChem 4(1), 64–68 (2012)

    Article  Google Scholar 

  17. Kruse, A., Meier, D., Rimbrecht, P., Schacht, M.: Gasification of pyrocatechol in supercritical water in the presence of potassium hydroxide. Ind. Eng. Chem. Res. 39(12), 4842–4848 (2000)

    Article  Google Scholar 

  18. Forchheim, D., Hornung, U., Kruse, A., Kempe, P., Steinbach, D.: Influence of RANEY-nickel on the formation of intermediates in the degradation of lignin. Int. J. Chem. Eng. 1 (2012)

  19. Nunn, T., Howard, J., Longwell, J., Peters, W.: Product compositions and kinetics in the rapid pyrolysis of milled wood lignin. Ind. Eng. Chem. Process Design Dev. 24, 844–852 (1985)

    Article  Google Scholar 

  20. Várhegyi, G., Antal, M., Jakab, E., Szabó, P.: Kinetic modeling of biomass pyrolysis. J. Anal. Appl. Pyrolysis. 42(1), 73–87 (1997)

    Article  Google Scholar 

  21. Faravelli, T., Frassoldati, A., Migliavacca, G., Ranzi, E.: Detailed kinetic modeling of the thermal degradation of lignins. Biomass Bioenergy 34(3), 290–301 (2010)

    Article  Google Scholar 

  22. Miller, R., Bellan, J.: A generalized biomass pyrolysis model based on superimposed cellulose, hemicellulose and lignin kinetics. Combust. Sci. Technol. 126, 97–137 (1997)

    Article  Google Scholar 

  23. Prakash, N., Karunanithi, T.: Kinetic modeling in biomass pyrolysis—a review. J. Appl. Sci. Res. 4(12), 1627–1636 (2008)

    Google Scholar 

  24. Brebu, M., Vasile, C.: Thermal degradation of lignin—a review. Cellul. Chem. Technol. 44(9), 353–363 (2010)

    Google Scholar 

  25. Zhang, B., Huang, H.-J., Ramaswamy, S.: Reaction kinetics of the hydrothermal treatment of lignin. Appl. Biochem. Biotechnol. 147(1–3), 119–131 (2011)

    Google Scholar 

  26. Wahyudiono, Sasaki, M., Goto, M.: Conversion of biomass model compound under hydrothermal conditions using batch reactor. Fuel 88(9), 1656–1664 (2009)

  27. Yong, T.L.-K., Matsumura, Y.: Reaction kinetics of the lignin conversion in supercritical water. Ind. Eng. Chem. Res. 51(37), 11975–11988 (2012)

    Article  Google Scholar 

  28. Gasson, J.R., Forchheim, D., Sutter, T., Hornung, U., Kruse, A., Barth, T.: Modeling the lignin degradation kinetics in an ethanol/formic acid solvolysis approach. Part 1. Kinetic model development. Ind. Eng. Chem. Res. 51(8), 10595–10606 (2012)

    Article  Google Scholar 

  29. Lagarias, J., Reeds, J., Wright, M., Wright, P.: Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J. Optim. 9(1), 112–147 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  30. Jiang, G., Nowakowski, D.J., Bridgwater, A.V.: A systematic study of the kinetics of lignin pyrolysis. Thermochim. Acta 498, 61–66 (2010)

    Article  Google Scholar 

  31. Takami, S., Okuda, K., Man, X., Umetsu, M., Ohara, S., Adschiri, T.: Kinetic study on the selective production of 2-(hydroxybenzyl)-4-methylphenol from organosolv lignin in a mixture of supercritical water and p-cresol. Ind. Eng. Chem. Res. 51(13), 4804–4808 (2012)

    Article  Google Scholar 

  32. Wang, X., Rinaldi, R.: Solvent effects on the hydrogenolysis of diphenyl ether with Raney nickel and their implications for the conversion of lignin. ChemSusChem 5(8), 1455–1466 (2012)

    Article  Google Scholar 

  33. Vuori, A.: Pyrolysis studies of some simple coal related aromatic methyl esters. Fuel 65, 1575–1583 (1986)

    Article  Google Scholar 

  34. Klein, M., Virk, P.: Modeling of lignin thermolysis. Energy Fuels 22, 2175–2182 (2008)

    Article  Google Scholar 

  35. Toor, S.S., Rosendahl, L., Rudolf, A.: Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy 36(5), 2328–2342 (2011)

    Article  Google Scholar 

  36. Nimmanwudipong, T., Runnebaum, R., Block, D., Gates, B.: Catalytic conversion of guaiacol catalyzed by platinum supported on alumina: reaction network including hydrodeoxygenation reactions. Energy Fuels 25, 3417–3427 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Robert Grandl for Matlab support, Birgit Rolli for GC analysis and maintenance and J. R. Gasson for helpful discussions. Furthermore, ALM India Pvt. Ltd. and SEKAB are thankfully acknowledged for providing the biomass and communication of sample information to us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Forchheim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (tif 132 KB)

Supplementary material 2 (PDF 82 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forchheim, D., Hornung, U., Kruse, A. et al. Kinetic Modelling of Hydrothermal Lignin Depolymerisation. Waste Biomass Valor 5, 985–994 (2014). https://doi.org/10.1007/s12649-014-9307-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-014-9307-6

Keywords

Navigation