Skip to main content

Advertisement

Log in

Biomethanation Potential of Wetland Biomass in Codigestion with Pig Slurry

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Constructed wetlands represent an increasingly expanding technology for treatment and reuse of poor quality waters and for the development of marginal areas. The exploitation of herbaceous biomass for biogas production may add further appeal to its adoption. Codigestion of lignocellulosic plant materials with pig slurry could meet the need for biomass hydration and possibly improve biogas yields. The objectives of this study were: (1) to evaluate the biomethanation potential of biomass from several species which are of interest for use in constructed wetlands, and its relationship with plant composition; (2) to evaluate the influence of codigestion of selected wetland species with pig slurry on methane production rate and yield. Biogas production was preliminarily measured in laboratory conditions using as substrates biomass samples belonging to 23 plant species coming from different environments. Eight of them were then tested for biogas production, alone or in codigestion with pig slurry (volatile solid ratio: 1/1). In monodigestion, CH4 yields were on average 213 mL CH4 g−1 volatile solids. Biogas production was positively related with N content and negatively with acid detergent fiber concentration and C to N ratio. The time for the joining of the maximum methane production was 25 % shorter and the amount of methane was 30 % higher for wetland biomass in codigestion with pig slurry than in monodigestion. The use of pig slurry as hydration medium for anaerobic digestion can improve the biomethanation potential of wetland biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Akula, V.R.: Wetland Biomass—Suitable for Biogas Production? Dissertation, Halmstad University, Sweden (2013)

  2. Alvinge, S.: Evaluation of Emergent Macrophytes as a Source for Biogas Production After Mechanical, Alkaline and Fungal Pretreatments. Dissertation. Linköping University, Sweden (2010)

  3. APHA: Standard Methods for the Examination of Water and Wastewater, 18th edn. American Public Health Association, Washington D.C., USA (1992)

  4. Atandi, E., Rahman, S.: Prospect of anaerobic co-digestion of dairy manure: a review. Environ. Technol. Rev. 1, 127–135 (2012)

    Article  Google Scholar 

  5. Bauer, A., Leonhartsberger, C., Bösch, P., Amon, B., Friedl, A., Amon, T.: Analysis of methane yields from energy crops and agricultural by-products and estimation of energy potential from sustainable crop rotation systems in EU-27. Clean Technol. Environ. Policy 12, 153–161 (2010)

    Article  Google Scholar 

  6. Bouallagui, H., Touhami, Y., Ben Cheikh, R., Hamdia, M.: Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Process Biochem. 40, 989–995 (2005)

    Article  Google Scholar 

  7. Calli, B., Mertoglu, B., Inanc, B., Yenigun, O.: Effects of high free ammonia concentrations on the performances of anaerobic bioreactors. Process Biochem. 40, 1285–1292 (2005)

    Article  Google Scholar 

  8. Cesarino, I., Araújo, P., Pereira Domingues Jr, A., Mazzafera, P.: An overview of lignin metabolism and its effect on biomass recalcitrance. Braz. J. Bot. 35, 303–311 (2012)

    Article  Google Scholar 

  9. Cohen, M.F., Hare, C., Kozlowski, J., McCormick, R.S., Chen, L., Schneider, L., Parish, M., Knight, Z., Nelson, T.A., Grewell, B.J.: Wastewater polishing by a channelized macrophyte dominated wetland and anaerobic digestion of the harvested phytomass. J. Environ. Sci. Health A 48, 319–330 (2013)

    Article  Google Scholar 

  10. Daglia, M.: Polyphenols as antimicrobial agents. Curr. Opin. Biotechnol. 23, 174–181 (2012)

    Article  Google Scholar 

  11. Dinuccio, E., Balsari, P., Gioelli, F., Menardo, S.: Evaluation of the biogas productivity potential of some Italian agro-industrial biomasses. Bioresour. Technol. 101, 3780–3783 (2010)

    Article  Google Scholar 

  12. Dipu, S., Kumar, A.A., Thanga, V.S.G.: Potential application of macrophytes used in phytoremediation. World Appl. Sci. J. 13, 482–486 (2011)

    Google Scholar 

  13. Esposito, G., Frunzo, L., Giordano, A., Liotta, F., Panico, A., Pirozzi, F.: Anaerobic co-digestion of organic wastes. Rev. Environ. Sci. Biotechnol. 11, 325–341 (2012)

    Article  Google Scholar 

  14. Kenealy, W., Zeikus, J.G.: Influence of corrinoid antagonists on methanogen metabolism. J. Bacteriol. 146, 133–140 (1981)

    Google Scholar 

  15. Kivaisi, A.K.: The potential for constructed wetlands for wastewater treatment and reuse in developing countries: a review. Ecol. Eng. 16, 545–560 (2001)

    Article  Google Scholar 

  16. Klimiuk, E., Pokój, T., Budzyński, W., Dubis, B.: Theoretical and observed biogas production from plant biomass of different fibre contents. Bioresour. Technol. 101, 9527–9535 (2010)

    Article  Google Scholar 

  17. Lay, J.J., Li, Y.Y., Noike, T.: Influences of pH and moisture content on the methane production in high-solids sludge digestion. Water Res. 31, 1518–1524 (1997)

    Article  Google Scholar 

  18. Li, X., Li, L., Zheng, M., Fu, G., Lar, J.S.: Anaerobic codigestion of cattle manure with corn stover pretreated by sodium hydroxide for efficient biogas production. Energy Fuels 23, 4635–4639 (2009)

    Article  Google Scholar 

  19. Liu, D., Wu, X., Chang, J., Gu, B., Min, Y., Ge, Y., Shi, Y., Xue, H., Peng, C., Wu, J.: Constructed wetlands as biofuel production systems. Nat. Clim. Change 2, 190–194 (2012)

    Article  Google Scholar 

  20. Lymperatou, A., Gavala, H.N., Esbensen, K.H., Skiadas, I.V.: AMMONOX: ammonia for enhancing biogas yield and reducing NOx—analysis of effects of aqueous ammonia soaking on manure fibers waste. Biomass Valoriz. 6, 449–457 (2015)

    Article  Google Scholar 

  21. Marshall, J.D.: Drought and shade interact to cause fine-root mortality in Douglas-fir seedlings. Plant Soil 91, 51–60 (1986)

    Article  Google Scholar 

  22. Molari, G., Milani, M., Toscano, A., Borin, M., Taglioli, G., Villani, G., Zema, D.A.: Energy characterisation of herbaceous biomasses irrigated with marginal waters. Biomass Bioenergy 70, 392–399 (2014)

    Article  Google Scholar 

  23. Oren, R., Schulze, E.D., Werk, K.S., Meyer, J., Schneider, H., Heilmeier, P.: Performance of two Picea abies (L.) Karst. stands at different stages of decline. Oecologia 75, 25–37 (1988)

    Article  Google Scholar 

  24. Owen, W.F., Stuckey, D.C., Healy Jr, J.B., Young, L.Y., McCarty, P.L.: Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res. 13, 485–492 (1979)

    Article  Google Scholar 

  25. Pappalardo, S.E., Prosdocimi, M., Tarolli, P., Borin, M.: Assessment of energy potential from wetland plants along the minor channel network in agricultural floodplain. Environ. Sci. Pollut. Res. 22, 2479–2490 (2015)

    Article  Google Scholar 

  26. Pavan, F., Breschigliaro, S., Borin, M.: Screening of eighteen species for digestate phytodepuration. Environ. Sci. Pollut. Res. 22, 2455–2466 (2015)

    Article  Google Scholar 

  27. Peu, P., Brugère, H., Pourcher, A.M., Kérourédan, M., Godon, J.J., Delgenès, J.P., et al.: Dynamics of a pig slurry microbial community during anaerobic storage and management. Appl. Environ. Microbiol. 72, 3578–3585 (2006)

    Article  Google Scholar 

  28. SAS Institute: SAS/STAT™ Guide for Personal Computers. Version 6, 2nd edn. SAS Institute, Cary, NC (1987)

  29. Schievano, A., Pognani, M., D’Imporzano, G., Adani, F.: Predicting anaerobic biogasification potential of ingestates and digestates of a full-scale biogas plant using chemical and biological parameters. Bioresour. Technol. 99, 8112–8117 (2008)

    Article  Google Scholar 

  30. Shiralipour, A., Smith, P.H.: Conversion of biomass into methane gas. Biomass 6, 85–92 (1984)

    Article  Google Scholar 

  31. Singleton, V.L., Rossi Jr, J.A.: Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16, 144–158 (1965)

    Google Scholar 

  32. Tambone, F., Scaglia, B., D’Imporzano, G., Schievano, A., Orzi, V., Salati, S., Adani, F.: Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and compost. Chemosphere 81, 577–583 (2010)

    Article  Google Scholar 

  33. Van Soest, P.J., Robertson, J.B., Lewis, B.A.: Methods for dietary fiber, neutral-detergent fiber and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597 (1991)

    Article  Google Scholar 

  34. Vasmara, C., Cianchetta, S., Marchetti, R., Galletti, S.: Biogas production from wheat straw pre-treated with ligninolytic fungi and co-digestion with pig slurry. Environ. Eng. Manag. J. 14, 1751–1760 (2015)

    Google Scholar 

  35. Verma, V.K., Singh, Y.P., Rai, J.P.N.: Biogas production from plant biomass used for phytoremediation of industrial wastes. Bioresour. Technol. 98, 1664–1669 (2007)

    Article  Google Scholar 

  36. Vymazal, J.: Constructed wetland for wastewater treatment: a review. Water 2, 530–549 (2010)

    Article  Google Scholar 

  37. Wang, X., Zhang, L., Xi, B., Sun, W., Xia, X., Zhu, C., He, X., Li, M., Yang, T., Wang, P.: Zhang. Z.: Biogas production improvement and C/N control by natural clinoptilolite addition into anaerobic co-digestion of Phragmites australis, feces and kitchen waste. Bioresour. Technol. 180, 192–199 (2015)

    Article  Google Scholar 

  38. Weiland, P.: Biogas production: current state and perspectives. Appl. Microbiol. Biotechnol. 85, 849–860 (2010)

    Article  Google Scholar 

  39. Wu, X., Yao, W., Zhu, J., Miller, C.: Biogas and CH4 productivity by co-digesting swine manure with three crop residues as an external carbon source. Bioresour. Technol. 101, 4042–4047 (2010)

    Article  Google Scholar 

  40. Zhang, W., Werner, J.J., Agler, M.T., Angenent, L.T.: Substrate type drives variation in reactor microbiomes of anaerobic digesters. Bioresour. Technol. 151, 397–401 (2014)

    Article  Google Scholar 

  41. Zhang, C., Xiao, G., Peng, L., Su, H., Tan, T.: The anaerobic co-digestion of food waste and cattle manure. Bioresour. Technol. 129, 170–176 (2013)

    Article  Google Scholar 

  42. Zwietering, M.H., Jongenburger, I., Rombouts, F.M., van’t Riet, K.: Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 56, 1875–1881 (1990)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Veneto Region PSR Measure 124 Project VALDIGE. The authors would also like to thank Anna Orsi, Lidia Sghedoni and Michele Comellini for their analytical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Marchetti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchetti, R., Vasmara, C., Florio, G. et al. Biomethanation Potential of Wetland Biomass in Codigestion with Pig Slurry. Waste Biomass Valor 7, 1081–1089 (2016). https://doi.org/10.1007/s12649-016-9515-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9515-3

Keywords

Navigation