Skip to main content

Advertisement

Log in

Accessing effects and signals of leakage from a CO2 reservoir to a shallow freshwater aquifer by reactive transport modelling

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

CO2 geological storage is a transitional technology for the mitigation of climate change. In the vicinity of potential CO2 reservoirs in Hungary, protected freshwater aquifers used for drinking water supplies exist. Effects of disaster events of CO2 escape and brine displacement to one of these aquifers have been studied by kinetic 1D reactive transport modelling in PHREEQC. Besides verifying that ion concentrations in the freshwater may increase up to drinking water limit values in both scenarios (CO2 or brine leakage), total porosity of the rock is estimated. Pore volume is expected to increase at the entry point of CO2 and to decrease at further distances, whereas it shows minor increase along the flow path for the effect of brine inflow. Additionally, electrical conductivity of water is estimated and suggested to be the best parameter to measure for cost-effective monitoring of both worst-case leakage scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(modified after Szocs et al. 2017; Szabó et al. 2017a)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Appelo CAJ (2017) Online: SPECIFIC CONDUCTANCE: how to calculate, to use, and the pitfalls. http://www.hydrochemistry.eu/exmpls/sc.html. Accessed 29 Nov 2017

  • Bahar M, Lui K (2008) Measurement of the diffusion coefficient of CO2 in formation water under reservoir conditions: implication for CO2 storage. In: Society of Petroleum Engineers, Asia Pacific Oil and Gas Conference and Exhibition, Perth, Australia. https://doi.org/10.2118/116513-MS

  • Cahill AG, Jakobsen R (2013) Hydro-geochemical impact of CO2 leakage from geological storage on shallow potable aquifers: a field scale pilot experiment. Int J Greenhouse Gas Control 19:678–688

    Article  Google Scholar 

  • Cahill AG, Marker P, Jakobsen R (2014) Hydrogeochemical and mineralogical effects of sustained CO2 contamination in a shallow sandy aquifer: a field-scale controlled release experiment. Water Resour Res 50:1735–1755

    Article  Google Scholar 

  • EASAC, European Academies Science Advisory Council (2013) Carbon Capture and Storage in Europe, EASAC Policy Report 20. DVZ-Daten-Service GmbH, Halle/Saale, Germany. ISBN 978-3-8047-3180-6

  • Falus G, Szamosfalvi Á, Vidó M, Török K, Jencsel H (2011) A hazai földtaniszerkezetek felmérése a szén-dioxid-visszasajtolás szempontjából. Magyar Tudomány 4:450–458

    Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall International, Hemel Hempstead

    Google Scholar 

  • Hódossyné-Hauszmann Z, Scholtz P, Falus G (2011) Carbon dioxide and radioactive waste in Central and Eastern Europe: a regional qverview af geological storage and disposal potential. In: Tóth FL (ed) Geological disposal of carbon dioxide and radioactive waste: a comparative assessment. Springer, Vienna, pp 463–488. ISBN 978-90-481-8711-9

    Chapter  Google Scholar 

  • Humez P, Négrel P, Lagneau V, Lions J, Kloppmann W, Gal F, Millot R, Guerrot C, Flehoc C, Widory D (2014) CO2-water-mineral reactions during CO2 leakage: geochemical and isotopic monitoring of a CO2 injection field test. Chem Geol 368:11–30

    Article  Google Scholar 

  • HZDR, Helmholtz-Zentrum Dresden-Rossendorf (2018) Online: RES3T—Rossendorf expert system for surface and sorption thermodynamics. http://www.hzdr.de/db/RES3T.queryData. Accessed 29 Nov 2017

  • IPCC, Intergovernmental Panel on Climate Change (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Kharaka YK, Thordsen JJ, Kakouros E, Ambats G, Herkelrath WN, Beers SR, Birkholzer JT, Apps JA, Spycher NF, Zheng L (2010) Changes in the chemistry of shallow groundwater related to the 2008 injection of CO2 at the ZERT field site. Bozeman Mont Environ Earth Sci 60:273–284

    Article  Google Scholar 

  • Király C, Sendula E, Szamosfalvi Á, Káldos R, Kónya P, Kovács IJ, Füri J, Bendő Z, Falus Gy (2016a) The relevance of dawsonite precipitation in CO2 sequestration in the Mihályi-Répcelak area, NW Hungary. Geol Soc Lond Spec Publ. https://doi.org/10.1144/SP435.15

    Google Scholar 

  • Király C, Szamosfalvi Á, Zilahi-Sebess L, Kónya P, Kovács IJ, Sendula E, Szabó C, Falus G (2016b) Caprock analysis from the Mihályi-Répcelak natural CO2 occurrence, Western Hungary. Environ Earth Sci 75:635

    Article  Google Scholar 

  • Lee KK, Lee SH, Yun ST, Jeen SW (2016) Shallow groundwater system monitoring on controlled CO2 release sites: a review on field experimental methods and efforts for CO2 leakage detection. Geosci J 20(4):569–583. https://doi.org/10.1007/s12303-015-0060-z

    Article  Google Scholar 

  • Lions J, Devau N, de Lary L, Dupraz S, Parmentier M, Gombert P, Dictor MC (2014) Potential impacts of leakage from CO2 geological storage on geochemical processes controlling fresh groundwater quality: a review. Int J Greenh Gas Control 22:165–175

    Article  Google Scholar 

  • Liu F, Lu P, Griffith C, Hedges SW, Soong Y, Hellevang H, Zhu C (2012) CO2–brine–caprock interaction: reactivity experiments on Eau Claire shale and a review of relevant literature. Int J Greenh Gas Control 7:153–167

    Article  Google Scholar 

  • Manceau JC, Hatzignatiou DG, De Lary L, Jensen NB, Réveillère A (2014) Mitigation and remediation technologies and practices in case of undesired migration of CO2 from a geological storage unit—current status. Int J Greenh Gas Control 22:272–290

    Article  Google Scholar 

  • Mickler PJ, Yang C, Scanlon BR, Reedy R, Lu J (2013) Potential impacts of CO2 leakage on groundwater chemistry from laboratory batch experiments and field push–pull tests. Environ Sci Technol 47:10694–10702

    Google Scholar 

  • PA, Purdue Agriculture (2018) Online: SOURCE CLAY PHYSICAL/CHEMICAL DATA. https://www.agry.purdue.edu/cjohnston/sourceclays/chem.htm. Accessed 29 Nov 2017

  • Palandri JL, Kharaka YK (2004) A compilation of rate parameters of water–mineral interaction kinetics for application to geochemical modelling. USGS Water-Recourses Investigations Report 04/1068

  • Parkhurst DL, Appelo CAJ (2013) Description of input and examples for PHREEQC version 3—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey, Reston, Virginia, p 497

    Google Scholar 

  • Peter A, Lamert H, Beyer M, Hornbruch G, Heinrich B, Schulz A, Geistlinger H, Schreiber B, Dietrich P, Werban U (2012) Investigation of the geochemical impact of CO2 on shallow groundwater: design and implementation of a CO2 injection test in Northeast Germany. Environ Earth Sci 67:335–349

    Article  Google Scholar 

  • Poulsen N, Bocin-Dumitriu A, Holloway S, Kirk K, Neele F, Smith N (2015) Reserves and resources for CO2 storage in Europe: the CO2 StoP project, GEUS. Geol Surv Den Greenl Bull 33:85–88

    Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/. Accessed 29 Nov 2017

  • Réveillére A, Rhomer J (2011) Managing the risk of CO2 leakage from deep saline aquifer reservoirs through the creation of a hydraulic barrier. In: 10th International Conference on Greenhouse Gas Control Technologies, Amsterdam, Netherlands, pp 3187–3194

  • Rillard J, Gombert P, Toulhoat P, Zuddas P (2014) Geochemical assessment of CO2 perturbation in a shallow aquifer evaluated by a push–pull field experiment. Int J Greenh Gas Control 21:23–32

    Article  Google Scholar 

  • Szabó Z, Hellevang H, Király C, Sendula E, Kónya P, Falus G, Török S, Szabó C (2016) Experimental-modelling geochemical study of potential CCS caprocks in brine and CO2-saturated brine. Int J Greenh Gas Control 44:262–275

    Article  Google Scholar 

  • Szabó Z, Gál NE, Kun É, Szőcs T, Falus G (2017a) Geochemical modelling possibilities of CO2 and brine inflow to fresh water aquifers. Cent Eur Geol 60:289–298. https://doi.org/10.1556/24.60.2017.014

    Article  Google Scholar 

  • Szabó Z, Hegyfalvi C, Freiler Á, Udvardi B, Kónya P, Székely E, Falus G (2017b) Experimental validation of Swy-2 clay standard’s PHREEQC model. Abstract for EGU General Assembly 2017

  • Szamosfalvi Á, Falus G, Juhász G (2011) The potential options of storing CO2 in saline reservoir in Hungary. Magyar Geofizika 52:95–106

    Google Scholar 

  • Szocs T, Frape S, Gwynne R, Palcsu L (2017) Chlorine stable isotope and helium isotope studies contributing to the understanding of the hydrogeochemical characteristics of old groundwater. Procedia Earth Planet Sci 17:877–880

    Article  Google Scholar 

  • Tóth G, Rotár-Szalkai Á, Kerékgyártó T, Szőcs T, Gáspár E, Lapanje A, Rman N, Svasta J, Cernak R, Remsik A, Schubert G, Berka R, Goetzl G (2012) Summary report of the supra-regional hydrogeological model. http://transenergy-eu.geologie.ac.at. Accessed 29 Nov 2017

  • Tóth G, Rman N, Rotár-Szalkai Á, Kerékgyártó T, Szőcs T, Lapanje A, Černák R, Remsík A, Schubert G, Nádor A (2016) Transboundary fresh and thermal groundwater flows in the west part of the Pannonian Basin. Renew Sustain Energy Rev 57:439–454

    Article  Google Scholar 

  • Trautz RC, Pugh JD, Varadharajan C, Zheng L, Bianchi M, Nico PS, Spycher NF, Newell DL, Esposito RA, Wu Y (2013) Effect of dissolved CO2 on a shallow groundwater system: a controlled release field experiment. Environ Sci Technol 47:298–305

    Article  Google Scholar 

  • UNFCCC, United Nations Framework Convention on Climate Change (2015) Paris Agreement, Article 21

  • Van Pham TH, Aagaard P, Hellevang H (2012) On the potential for CO2 mineral storage in continental flood basalts—PHREEQC batch- and 1D diffusion–reaction simulations. Geochem Trans 13:5

    Article  Google Scholar 

  • Varadharajan C, Tinnacher RM, Pugh JD, Trautz RC, Zheng L, Spycher NF, Birkholzer JT, Castillo-Michel H, Esposito RA, Nico PS (2013) A laboratory study of the initial effects of dissolved carbon dioxide (CO2) on metal release from shallow sediments. Int J Greenh Gas Control 19:183–211

    Article  Google Scholar 

  • Webmineral (2017) Online: Montmorillonite mineral data, general montmorillonite information. http://webmineral.com/data/Montmorillonite.shtml#.Wh5aYEribcs. Accessed 29 Nov 2017

  • Williams MD, Vermuel VR, Oostrom M, Porse SL, Thorne PD, Szecsody JE, Horner JA, Gilmore TJ (2014) Design support of an above cap-rock early detection monitoring system using simulated leakage scenarios at the FutureGen2.0 Site. Energy Procedia 63:4071–4082

    Article  Google Scholar 

  • Wolery TJ (1979) Calculation of chemical equilibrium between aqueous solution and minerals—The EQ3/6 software package: Livermore, California, Lawrence Livermore National Laboratory Report UCRL-52658, p 41

  • Yang C, Mickler PJ, Reedy R, Scanlon BR, Romanak KD, Nicot J-P, Hovorka SD, Trevino RH, Larson T (2013) Singlewell push–pull test for assessing potential impacts of CO2 leakage on groundwater quality in a shallow Gulf Coast aquifer in Cranfield, Mississippi. Int J Greenh Gas Control 18:375–387

    Article  Google Scholar 

  • Zou Y, Li S, Ma X, Zhang S, Li N, Chen M (2017) Effects of CO2–brine–rock interaction on porosity/permeability and mechanical properties during supercritical-CO2 fracturing in shale reservoirs. J Nat Gas Sci Eng. https://doi.org/10.1016/j.jngse.2017.11.004

    Google Scholar 

  • Gal F, Proust E, Humez P, Braibant G, Brach M, Koch F, Wideroy D, Girard J-F (2013) Inducing a CO2 leak into shallow aquifer (CO2 FIELDLAB Eurogia+Project): monitoring the CO2 Plume in ground waters. Energy Procedia 37:3583–3593

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by the OTKA program of the National Research, Development and Innovation Office of Hungary (K 115927 for Gy. Falus). The authors thank the contribution of Péter Kónya for XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zsuzsanna Szabó.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 24 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szabó, Z., Gál, N.E., Kun, É. et al. Accessing effects and signals of leakage from a CO2 reservoir to a shallow freshwater aquifer by reactive transport modelling. Environ Earth Sci 77, 460 (2018). https://doi.org/10.1007/s12665-018-7637-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-018-7637-6

Keywords

Navigation