Skip to main content
Log in

Effect of Weld Thermal Cycles on Microstructures and Mechanical Properties in Simulated Heat Affected Zone of a HY 85 Steel

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Physical weld simulation for single and two-pass weld of a HY 85 steel has been done using thermo mechanical simulator at constant heat input of 22 kJ/cm. Attempt has been made to investigate the causes behind the deterioration of mechanical properties in the coarse grain heat affected zone (CGHAZ) in single pass and subsequent improvement in the mechanical properties of CGHAZ region in the two-pass weld. HY 85 steel finds wide applications in the making of ship hull. Impact toughness at −50 °C for CGHAZ in the single pass weld has been found to be 49 J. However, impact toughness improves to 122 J in the super critical reheated CGHAZ region for two-pass weld. This improvement in the impact toughness has been observed due to reaustenitization of fine prior austenite grains of average size of 44 µm from 99 µm, refinement of bainitic ferrite lath, and M–A constituents during second pass weld.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kumar S, Nath S K, and Kumar V, Mater Perform Charact ASTM 4 (2015) 365.

    Google Scholar 

  2. Ghosh A, Kundu S, and Chatterjee S, Def Sci J 57 (2007) 627.

    Google Scholar 

  3. Cho G, International Conference Exploiting Advances in Arc Welding Technology, in: Abington Publishing, Cambridge UK, 1998: p 191.

  4. Hu J, Du L X, Wang J J, and Gao C R, Mater Sci Eng A 577 (2013) 161.

    Article  Google Scholar 

  5. Basu B, and Raman R, Weld J 81 (2002) 239s.

    Google Scholar 

  6. Guo A, Misra R D K, Liu J, Chen L, He X, and Jansto S J, Mater Sci Eng A 527 (2010) 6440.

    Article  Google Scholar 

  7. You Y, Shang C, Chen L, and Subramanian S, Mater Des 43 (2013) 485.

    Article  Google Scholar 

  8. Amer A E, Koo M Y, Lee K H, Kim S H, and Hong S H, J Mater Sci 45 (2010) 1248.

    Article  Google Scholar 

  9. Lan L, Qiu C, Zhao D, Gao X, and Du L, Mater Sci Eng A 558 (2012) 592.

    Article  Google Scholar 

  10. Matusuda F, Ikeuchi K, Fukada Y, Horii Y, Okada H, and Shiwaku T, Trans JWRI 24 (1995) 1.

    Google Scholar 

  11. Moeinifar S, Kokabi A H, and Hosseini H R M, Mater Des 32 (2011) 869.

    Article  Google Scholar 

  12. Liu W Y, Wang L, Liu J B, Zhang Y Y, Li P H, and Yuan G L, J Iron Steel Res Int 14 (2007) 220.

    Article  Google Scholar 

  13. Zhang Y Q, Zhang H Q, Li J F, and Liu W M, J Iron Steel Res Int 16 (2009) 73.

    Article  Google Scholar 

  14. Hu J, Du L X, Wang J J, Xie H, Gao C R, and Misra R D K, Mater Sci Eng A 590 (2014) 323.

    Article  Google Scholar 

  15. Kim S, Kang D, Kim T W, Lee J, and Lee C, Mater Sci Eng A 528 (2011) 2331.

    Article  Google Scholar 

  16. Kumar S, Chaudhari G P, Nath S K, and Basu B, Mater Manuf Process 27 (2012) 1382.

    Article  Google Scholar 

  17. Zhang Z, Hauge M, Thaulow C, and Ødegård J, Eng Fract Mech 69 (2002) 353.

    Article  Google Scholar 

  18. Hairer F, Karelova A, Krempaszky C, Werner E, Hebesberger T, and Pichler A, Int. Doctoral Seminar, Smolenice, SK (2008) 50.

  19. Girault E, Jacques P, Harlet P, Mols K, Humbeeck J V, and Aernoudt E, Mater Charact 40 (1998) 111.

    Article  Google Scholar 

  20. Kumar S, Nath S K, and Kumar V, Mater Des 90 (2016) 177.

    Google Scholar 

  21. Yue X, Weld World 59 (2015) 77.

    Article  Google Scholar 

  22. Hu J, Du L X, Xie H, Dong F T, and Misra R D K, Mater Des 60 (2014) 302.

    Article  Google Scholar 

  23. Bhadeshia H K D H, Mater Sci Eng A 273–275 (1999) 58.

    Article  Google Scholar 

  24. da Junior Cruz J A, and Santos D B, J Mater Res Technol 2 (2013) 93.

    Article  Google Scholar 

  25. Kong X, and Qiu C, J Mater Sci Technol 29 (2013) 446.

    Article  Google Scholar 

  26. Wang X L, Wang X M, Shang C J, and Misra R D K, Mater Sci Eng A 649 (2016) 282.

    Article  Google Scholar 

  27. Lan L, Qiu C L, Zhao D W, Gao X H, and Du L X, Mater Sci Technol 27 (2011) 1657.

    Google Scholar 

  28. Bu F Z, Wang X M, Chen L, Yang S W, Shang C J, and Misra R D K, Mater Charact 102 (2015) 146.

    Article  Google Scholar 

  29. Lan L, Qiu C, Zhao D, Gao X, and Du L, J Mater Sci 47 (2012) 4732.

    Article  Google Scholar 

  30. Sakino Y and Kim Y C, Int J Steel Struct 13 (2013) 21.

    Article  Google Scholar 

  31. Moeinifar S, Kokabi A H, and Hosseini H R M, Mater Des (2010) 2948.

  32. Suzuki S, Bessyo K, Toyoda M, Minami F, and Japan Q, J Weld Soc 13 (1995) 293.

    Article  Google Scholar 

  33. Liu W Y, Liu J B, Zhu C M, and Wang H, Adv Mater Res 228–229 (2011) 1196.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Department of Science and Technology (DST) New Delhi for purchasing Thermo-mechanical simulator Gleeble®3800 in IIT Roorkee from FIST grant (SR/FST/ETI-216/2007 Dated 06.02.2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Nath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Nath, S.K. Effect of Weld Thermal Cycles on Microstructures and Mechanical Properties in Simulated Heat Affected Zone of a HY 85 Steel. Trans Indian Inst Met 70, 239–250 (2017). https://doi.org/10.1007/s12666-016-0880-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-016-0880-1

Keywords

Navigation