Skip to main content
Log in

Composite Electrode Material Based on Electrochemically Reduced Graphene Oxide and Gold Nanoparticles for Electrocatalytic Detection of Ascorbic Acid

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

A nanostructured composite matrix containing gold nanoparticles (AuNPs), graphene oxide (GO), and Nafion was immobilized on the surface of a glassy carbon electrode (GCE) by drop casting. The GO was electrochemically reduced (erGO), in order to obtain a modified interface (GCE/AuNPs-erGO-Nafion) able to detect l-ascorbic acid (AA) at lower oxidation potentials with increased sensitivity. The obtained modified electrode was investigated by cyclic voltammetry, electrochemical impedance spectroscopy (EIS), and amperometry. The corroborated results showed that erGO and AuNPs at the interface act as a unique material having both high surface area (due to erGO) and high conductivity (due to AuNPs), being an effective electron transfer promoter in the electro-oxidation process of AA, lowering the oxidation potential of AA by ca. 0.400 V vs. Ag/AgCl,KClsat. The analytical parameters for AA detection at the modified GCE/AuNPs-erGO-Nafion electrode were determined by amperometry with a sensitivity of 39.07 ± 1.36 μA/mM and a detection limit of 2.76 μM AA (signal/noise ratio of 3). The GCE/AuNPs-erGO-Nafion-modified electrode is simple to prepare, reliable, and with high sensitivity and was applied successfully in the routine analysis of AA in pharmaceutical products.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. O.C. Ozoemena, L.J. Shai, T. Maphumulo, K.I. Ozoemena, Electrocatalysis 1, –11 (2019)

  2. P. Krzyczmonik, E. Socha, S. Skrzypek, Electrochemical detection of glucose in beverage samples using poly(3,4-ethylenedioxythiophene)-modified electrodes with immobilized glucose oxidase. Electrocatalysis 9(3), 380–387 (2018)

    Article  CAS  Google Scholar 

  3. R.R. Eitenmiller, L. Ye, W.O. Landen, Vitamin Analysis for the Health and Food Sciences, 2nd Edition, Chapter 5 (CRC Press, Boca Raton, 2008), pp. 231–290

    Google Scholar 

  4. L. Zhang, X. Lin, Y. Sun, Separation of anodic peaks of ascorbic acid and dopamine at an α-alanine covalently modified glassy carbon electrode. Analyst 126(10), 1760–1763 (2001)

    Article  CAS  Google Scholar 

  5. K.-C. Lin, P.-C. Yeh, S.-M. Chen, Int. J. Electrochem. Sci. 7, 12752–12763 (2012)

    CAS  Google Scholar 

  6. Y. Chen, A.W. Hassel, A. Erbe, Enhancement of the electrocatalytic activity of gold nanoparticles towards methanol oxidation. Electrocatalysis 2(2), 106–113 (2011)

    Article  CAS  Google Scholar 

  7. W. Huan, X. Li-Guang, C. Xue-Feng, C. Yao-Dan, Y. Xiao-Tian, Chin. J. Anal. Chem. 44, 1617–1625 (2016)

  8. C. Wang, F. Ye, H. Wu, Y. Qian, Int. J. Electrochem. Sci. 8, 2440–2448 (2013)

    CAS  Google Scholar 

  9. T. Madrakian, E. Haghshenas, A. Afkhami, Simultaneous determination of tyrosine, acetaminophen and ascorbic acid using gold nanoparticles/multiwalled carbon nanotube/glassy carbon electrode by differential pulse voltammetric method. Sens. Actuat. B 193, 451–460 (2014)

    Article  CAS  Google Scholar 

  10. Q. Zhua, J. Baoa, D. Huoa, M. Yanga, C. Houa, J. Guoa, M. Chena, H. Fa, X. Luoa, Y. Ma, 3D graphene hydrogel – gold nanoparticles nanocomposite modified glassy carbon electrode for the simultaneous determination of ascorbic acid, dopamine and uric acid. Sens. Actuat. B 238, 1316–1323 (2017)

    Article  CAS  Google Scholar 

  11. C.-L. Sun, H.-H. Lee, J.-M. Yang, C.-C. Wu, The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites. Biosens. Bioelectron. 26(8), 3450–3455 (2011)

    Article  CAS  Google Scholar 

  12. M. Nithya, Electrochemical sensing of ascorbic acid on zno-decorated reduced graphene oxide electrode. J. Biosens. Bioelectron. 6(1–9) (2015)

  13. T. Peik-See, A. Pandikumar, H. Nay-Ming, L. Hong-Ngee, Y. Sulaiman, Simultaneous electrochemical detection of dopamine and ascorbic acid using an iron oxide/reduced graphene oxide modified glassy carbon electrode. Sensors 14(8), 15227–15243 (2014)

    Article  CAS  PubMed  Google Scholar 

  14. H. Heli, Amperometric determination of ascorbic acid in pharmaceutical formulations by a reduced graphene oxide-cobalt hexacyanoferrate nanocomposite. Iran. J. Pharm. Res. 14(2), 453–463 (2015)

  15. J.I. Paredes, S.V. Rodil, M.J.F. Merino, L. Guardia, A.M. Alonso, J.M.D. Tascon, Environmentally friendly approaches toward the mass production of processable graphene from graphite oxide. J. Mater. Chem. 21(2), 298–306 (2011)

    Article  CAS  Google Scholar 

  16. D. Konios, M.M. Stylianakis, E. Stratakis, E. Kymakis, Dispersion behaviour of graphene oxide and reduced graphene oxide. J. Colloid Interface Sci. 430, 108–112 (2014)

  17. S. Cinti, F. Arduini, M. Carbone, L. Sansone, I. Cacciotti, D. Moscone, G. Palleschi, Screen-printed electrodes modified with carbon nanomaterials: a comparison among carbon black, carbon nanotubes and graphene. Electroanalysis 27(9), 2230–2238 (2015)

    Article  CAS  Google Scholar 

  18. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007)

    Article  CAS  Google Scholar 

  19. W. Huang, Q. Hao, W. Lei, L. Wu, X. Xia, Polypyrrole-hemin-reduce graphene oxide: rapid synthesis and enhanced electrocatalytic activity towards the reduction of hydrogen peroxide. Mater. Res. Express 1(4), 045601 (2014)

    Article  CAS  Google Scholar 

  20. C.T.J. Low, F.C. Walsh, M.H. Chakrabarti, M.A. Hashim, M.A. Hussain, Electrochemical approaches to the production of graphene flakes and their potential applications. Carbon 54, 1–21 (2013)

    Article  CAS  Google Scholar 

  21. K.Q. Deng, J. Zhou, X.F. Li, Direct electrochemical reduction of graphene oxide and its application to determination of l-tryptophan and l-tyrosine. Colloids Surf. B: Biointerfaces 101, 183–188 (2013)

    Article  CAS  PubMed  Google Scholar 

  22. J. Kauppila, P. Kunnas, P. Damlin, A. Viinikanoja, C. Kvarnström, Electrochemical reduction of graphene oxide films in aqueous and organic solutions. Electrochim. Acta 89, 84–89 (2013)

    Article  CAS  Google Scholar 

  23. J. Song, L. Xu, R. Xing, Q. Li, C. Zhou, D. Liu, H. Song, Sci. Rep-UK 4, 7515 (2014)

    Article  CAS  Google Scholar 

  24. V.V. Neklyudov, N.R. Khafizov, I.A. Sedov, A.M. Dimiev, New insights into the solubility of graphene oxide in water and alcohols. Phys. Chem. Chem. Phys. 19(26), 17000–17008 (2017)

    Article  CAS  PubMed  Google Scholar 

  25. Á.F. Szőke, G.S. Szabó, Z. Hórvölgyi, E. Albert, L. Gaina, L.M. Muresan, Eco-friendly indigo carmine-loaded chitosan coatings for improved anti-corrosion protection of zinc substrates. Carbohyd. Polym. 215, 63–72 (2019)

    Article  CAS  Google Scholar 

  26. M.E.I. Ahmed, S. Eng, Soc. J. 52(47), 45–55 (2006)

    Google Scholar 

  27. J. Li, S. Guo, Y. Zhai, E. Wang, High-sensitivity determination of lead and cadmium based on the Nafion-graphene composite film. Analyt. Chim. Acta 649(2), 196–201 (2009)

    Article  CAS  Google Scholar 

  28. L.C. Cotet, K. Magyari, M. Todea, M.C. Dudescu, V. Danciu, L. Baia, Versatile self-assembled graphene oxide membranes obtained under ambient conditions by using a water–ethanol suspension. J. Mat. Chem. A 5(5), 2132–2142 (2017)

    Article  CAS  Google Scholar 

  29. G. Frens, Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 241(105), 20–22 (1973)

    Article  CAS  Google Scholar 

  30. M. Beltowska-Brzezinska, A. Zmaczynska, T. Luczak, Effect of gold modification with 3-mercaptopropionic acid, cysteamine and gold nanoparticles on monoethanolamine electrooxidation. Electrocatalysis 7(1), 79–86 (2016)

    Article  CAS  Google Scholar 

  31. A.A. Nascimento, L.M. Alencar, C.R. Zanata, E. Teixeira-Neto, A.P.M. Mangini, G.A. Camara, M.A.G. Trindade, C.A. Martins, First assessments of the influence of oxygen reduction on the glycerol electrooxidation reaction on pt. Electrocatalysis 10(1), 82–94 (2019)

    Article  CAS  Google Scholar 

  32. M.L. Belfar, T. Lanez, A. Rebiai, Z. Ghiaba, Int. J. Electrochem. Sci. 10, 9641–9651 (2015)

    CAS  Google Scholar 

  33. G. Ziyatdinova, E. Ziganshina, H. Budnikov, Voltammetric determination of β-carotene in raw vegetables and berries in Triton X100 media. Talanta 99, 1024–1029 (2012)

    Article  CAS  PubMed  Google Scholar 

  34. Á.F. Szoke, G.L. Turdean, G. Katona, L.M. Muresan, Stud. UBB Chem. 61, 135–144 (2016)

  35. A. Szőke, G. Turdean, L. Muresan, Bulg. Chem. Commun. 49(C), 147–154 (2017)

  36. G.T. Gnahore, T. Velasco-Torrijos, J. Colleran, The selective electrochemical detection of dopamine using a sulfated β-cyclodextrin carbon paste electrode. Electrocatalysis 8(5), 459–471 (2017)

    Article  CAS  Google Scholar 

  37. G. Hu, Y. Ma, Y. Guo, S. Shao, Electrocatalytic oxidation and simultaneous determination of uric acid and ascorbic acid on the gold nanoparticles-modified glassy carbon electrode. Electrochim. Acta 53(22), 6610–6615 (2008)

    Article  CAS  Google Scholar 

  38. S.L. Mu, J.Q. Kan, The electrocatalytic oxidation of ascorbic acid on polyaniline film synthesized in the presence of ferrocenesulfonic acid. Synth. Met. 132(1), 29–33 (2002)

  39. J.G. Ren, H.X. Zhang, Q.L. Ren, C.K. Xia, J. Wan, Z.B. Qin, Study of the catalytic electro-oxidation of ascorbic acid on an electrode modified by macrocyclic compounds of Fe(III), Mn(III), Ni(II), and Co(II) with TBP. J. Electroanal. Chem. 504(1), 59–63 (2001)

  40. R. Gupta, V. Ganesan, Gold nanoparticles impregnated mesoporous silica spheres for simultaneous and selective determination of uric acid and ascorbic acid. Sens. Actuat. B 219, 139–145 (2015)

    Article  CAS  Google Scholar 

  41. S. Karra, M. Wooten, W. Griffith, W. Gorski, Morphology of gold nanoparticles and electrocatalysis of glucose oxidation. Electrochim. Acta 218, 8–14 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Katona Gabriel for the TEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Graziella Liana Turdean or Liana Maria Muresan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 395 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szoke, A., Zsebe, Z., Turdean, G.L. et al. Composite Electrode Material Based on Electrochemically Reduced Graphene Oxide and Gold Nanoparticles for Electrocatalytic Detection of Ascorbic Acid. Electrocatalysis 10, 573–583 (2019). https://doi.org/10.1007/s12678-019-00543-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-019-00543-4

Keywords

Navigation