Skip to main content
Log in

Arterial Spin Labeling for Acute Stroke: Practical Considerations

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Arterial spin labeling (ASL) is a non-contrast method of measuring cerebral perfusion with MRI. It has several advantages over traditional contrast-based perfusion-weighted imaging, including non-invasiveness, more straightforward cerebral blood flow (CBF) quantification, and repeatability. However, because of its lower signal-to-noise ratio (SNR) per unit time and its high sensitivity to arterial transit delays, it has not been used frequently in acute stroke, where arterial delays and time-efficiency are of the essence. This is beginning to change, driven by higher SNR implementations of ASL and the increasing use of 3T scanners. Furthermore, velocity-selective ASL sequences that are largely insensitive to arrival times are beginning to be applied to patients with cerebrovascular disease and promise the ability to quantify CBF even in regions supplied by late-arriving collateral flow. Despite these advances, many practical issues must be addressed to optimize ASL for its use in acute stroke studies. These include optimizing the trade-off between time, SNR, imaging resolution, and sensitivity to slow flow. Rapid and robust post-processing of image data must be made routine, such that CBF maps are available in real time so that they can be considered when making treatment decisions. Lastly, automated software needs to be developed in order to delineate hypoperfused tissue volumes, which is challenging due to the inherent differences between gray and white matter CBF. Attention to these details is critical to translate this promising research tool into mainstream clinical trials and practice in acute stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kidwell CS, Alger JR, Saver JL. Beyond mismatch: evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging. Stroke. 2003;34:2729–35.

    Article  PubMed  Google Scholar 

  2. Albers GW, Thijs VN, Wechsler L, et al. Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Ann Neurol. 2006;60:508–17.

    Article  PubMed  Google Scholar 

  3. Villringer A, Rosen BR, Belliveau JW, et al. Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn Reson Med. 1988;6:164–74.

    Article  PubMed  CAS  Google Scholar 

  4. Sorensen AG, Buonanno FS, Gonzalez RG, et al. Hyperacute stroke: evaluation with combined multisection diffusion-weighted and hemodynamically weighted echo-planar MR imaging. Radiology. 1996;199:391–401.

    PubMed  CAS  Google Scholar 

  5. Olivot JM, Mlynash M, Thijs VN, et al. Optimal Tmax threshold for predicting penumbral tissue in acute stroke. Stroke. 2009;40:469–75.

    Article  PubMed  Google Scholar 

  6. Christensen S, Mouridsen K, Wu O, et al. Comparison of 10 perfusion MRI parameters in 97 sub-6-hour stroke patients using voxel-based receiver operating characteristics analysis. Stroke. 2009;40:2055–61.

    Article  PubMed  Google Scholar 

  7. Straka M, Albers GW, Bammer R. Real-time diffusion-perfusion mismatch analysis in acute stroke. J Magn Reson Imaging. 2010;32:1024–37.

    Article  PubMed  Google Scholar 

  8. Detre JA, Leigh JS, Williams DS, Koretsky AP. Perfusion imaging. Magn Reson Med. 1992;23:37–45.

    Article  PubMed  CAS  Google Scholar 

  9. Roberts DA, Detre JA, Bolinger L, Insko EK, Leigh JS. Quantitative magnetic resonance imaging of human brain perfusion at 1.5 T using steady-state inversion of arterial water. Proc Natl Acad Sci. 1994;91:33–7.

    Article  PubMed  CAS  Google Scholar 

  10. Hjort N, Butcher K, Davis SM, et al. Magnetic resonance imaging criteria for thrombolysis in acute cerebral infarct. Stroke. 2005;36:388–97.

    Article  PubMed  CAS  Google Scholar 

  11. Bongartz G. Imaging in the time of NFD/NSF: do we have to change our routines concerning renal insufficiency? Magma. 2007;20:57–62.

    Article  PubMed  CAS  Google Scholar 

  12. Davis SM, Donnan GA, Parsons MW, et al. Effects of alteplase beyond 3 h after stroke in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET): a placebo-controlled randomised trial. Lancet Neurol. 2008;7:299–309.

    Article  PubMed  Google Scholar 

  13. Schellinger PD, Fiebach JB, Hacke W. Imaging-based decision making in thrombolytic therapy for ischemic stroke: present status. Stroke. 2003;34:575–83.

    Article  PubMed  Google Scholar 

  14. Dai W, Garcia D, de Bazelaire C, Alsop DC. Continuous flow driven inversion for arterial spin labeling using pulsed radiofrequency and gradient fields. Magn Reson Med. 2008;60:1488–97.

    Article  PubMed  Google Scholar 

  15. Hendrikse J, van Osch MJ, Rutgers DR, et al. Internal carotid artery occlusion assessed at pulsed arterial spin-labeling perfusion MR imaging at multiple delay times. Radiology. 2004;233:899–904.

    Article  PubMed  Google Scholar 

  16. Bokkers RP, van der Worp HB, Mali WP, Hendrikse J. Noninvasive MR imaging of cerebral perfusion in patients with a carotid artery stenosis. Neurology. 2009;73:869–75.

    Article  PubMed  CAS  Google Scholar 

  17. Siewert B, Schlaug G, Edelman RR, Warach S. Comparison of EPISTAR and T2*-weighted gadolinium-enhanced perfusion imaging in patients with acute cerebral ischemia. Neurology. 1997;48:673–9.

    Article  PubMed  CAS  Google Scholar 

  18. Chalela JA, Alsop DC, Gonzalez-Atavales JB, Maldjian JA, Kasner SE, Detre JA. Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke. 2000;31:680–7.

    Article  PubMed  CAS  Google Scholar 

  19. Wang DJ, Alger JR, Qiao JX, et al. The value of arterial spin-labeled perfusion imaging in acute ischemic stroke—comparison with dynamic susceptibility contrast-enhanced MRI. Stroke. 2012;43:1018–24.

    Google Scholar 

  20. Deibler AR, Pollock JM, Kraft RA, Tan H, Burdette JH, Maldjian JA. Arterial spin-labeling in routine clinical practice, part 2: hypoperfusion patterns. AJNR Am J Neuroradiol. 2008;29:1235–41.

    Article  PubMed  CAS  Google Scholar 

  21. Zaharchuk G, El Mogy I, Fischbein N, Albers G. Comparison of arterial spin labeling and bolus perfusion-weighted imaging for detecting mismatch in acute stroke. Stroke. 2012; in press

  22. Wang J, Alsop DC, Song HK, et al. Arterial transit time imaging with flow encoding arterial spin tagging (FEAST). Magn Reson Med. 2003;50:599–607.

    Article  PubMed  Google Scholar 

  23. Petersen ET, Lim T, Golay X. Model-free arterial spin labeling quantification approach for perfusion MRI. Magn Reson Med. 2006;55:219–32.

    Article  PubMed  Google Scholar 

  24. Zaharchuk G, Shankaranarayanan A, Alsop DC. Removing large vessel contamination from arterial spin label MR perfusion images using T2 preparation. In Proc Radiological Society of. North America. Chicago, IL. 2008:VN31-10

  25. Detre JA, Samuels OB, Alsop DC, Gonzalez-At JB, Kasner SE, Raps EC. Noninvasive magnetic resonance imaging evaluation of cerebral blood flow with acetazolamide challenge in patients with cerebrovascular stenosis. J Magn Reson Imaging. 1999;10:870–5.

    Article  PubMed  CAS  Google Scholar 

  26. Zaharchuk G, Bammer R, Straka M, et al. Arterial spin-label imaging in patients with normal bolus perfusion-weighted MR imaging findings: pilot identification of the borderzone sign. Radiology. 2009;252:797–807.

    Article  PubMed  Google Scholar 

  27. Wolf RL, Wang J, Detre JA, Zager EL, Hurst RW. Arteriovenous shunt visualization in arteriovenous malformations with arterial spin-labeling MR imaging. AJNR Am J Neuroradiol. 2008;29:681–7.

    Article  PubMed  CAS  Google Scholar 

  28. Le TT, Fischbein NJ, Andre JB, Wijman C, Rosenberg J, Zaharchuk G. Identification of venous signal on arterial spin labeling improves diagnosis of dural arteriovenous fistulas and small arteriovenous malformations. AJNR Am J Neuroradiol. 2012;33:61–8.

    Article  PubMed  CAS  Google Scholar 

  29. Deibler AR, Pollock JM, Kraft RA, Tan H, Burdette JH, Maldjian JA. Arterial spin-labeling in routine clinical practice, part 3: hyperperfusion patterns. AJNR Am J Neuroradiol. 2008;29:1428–35.

    Article  PubMed  CAS  Google Scholar 

  30. Wong EC, Cronin M, Wu W-C, Inglis B, Frank LR, Liu TT. Velocity-selective arterial spin labeling. Magn Reson Med. 2006;55:1334–41.

    Article  PubMed  Google Scholar 

  31. Duhamel G, de Bazelaire C, Alsop DC. Evaluation of systematic quantification errors in velocity-selective arterial spin labeling of the brain. Magn Reson Med. 2003;50:145–53.

    Article  PubMed  Google Scholar 

  32. Qiu D, Straka M, Zun Z, Bammer R, Moseley ME, Zaharchuk G. CBF measurements using multidelay pseudocontinuous and velocity-selective arterial spin labeling in patients with long arterial transit delays: comparison with xenon CT CBF. J Magn Reson Imaging. 2012. doi:10.1002/jmri.23613.

  33. Wu WC, Wong EC. Intravascular effect in velocity-selective arterial spin labeling: the choice of inflow time and cutoff velocity. NeuroImage. 2006;32:122–8.

    Article  PubMed  Google Scholar 

  34. Deibler AR, Pollock JM, Kraft RA, Tan H, Burdette JH, Maldjian JA. Arterial spin-labeling in routine clinical practice, part 1: technique and artifacts. AJNR Am J Neuroradiol. 2008;29:1228–34.

    Article  PubMed  CAS  Google Scholar 

  35. Luh WM, Wong EC, Bandettini PA, Hyde JS. QUIPSS II with thin-slice TI1 periodic saturation: a method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling. Magn Reson Med. 1999;41:1246–54.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by multiple NIH grants (R01-NS066506, R01-NS047607), by GE Healthcare, and the Lucas foundation.

Conflict of Interest

The author is a member of the Neuroradiology Advisory Board for GE Healthcare and also receives research support from GE Healthcare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg Zaharchuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaharchuk, G. Arterial Spin Labeling for Acute Stroke: Practical Considerations. Transl. Stroke Res. 3, 228–235 (2012). https://doi.org/10.1007/s12975-012-0159-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-012-0159-8

Keywords

Navigation