Skip to main content
Log in

Effects of Low-Frequency Repetitive Transcranial Magnetic Stimulation Combined with Intensive Speech Therapy on Cerebral Blood Flow in Post-Stroke Aphasia

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

We provided an intervention to chronic post-stroke aphasic patients using low-frequency repetitive transcranial magnetic stimulation (LF-rTMS) guided by a functional magnetic resonance imaging (fMRI) evaluation of language laterality, combined with intensive speech therapy (ST). We performed a single photon emission-computed tomography (SPECT) scan pre- and post-intervention and investigated the relationship between cerebral blood flow (CBF) and language function. Fifty right-handed chronic post-stroke aphasic patients were enrolled in the study. During their 11-day hospital admission, the patients received a 40-min session of 1-Hz LF-rTMS on the left or right hemisphere, according to language localization identified by the fMRI evaluation, and intensive ST daily for 10 days, except for Sunday. A SPECT scan and language evaluation by the Standard Language Test of Aphasia (SLTA) were performed at the time of admission and at 3 months following discharge. We calculated laterality indices (LIs) of regional CBF (rCBF) in 13 language-related Brodmann area (BA) regions of interest. In patients who received LF-rTMS to the intact right hemisphere (RH-LF-rTMS), the improvement in the total SLTA score was significantly correlated with the pre- and post-intervention change of LI (ΔLI) in BA44. In patients who received LF-rTMS to the lesional left hemisphere (LH-LF-rTMS), this association was not observed. Analyses of the SLTA subscales and rCBF ΔLI demonstrated that in the RH-LF-rTMS group, the SLTA Speaking subscale scores were significantly correlated with ΔLIs in BA11, 20, and 21, and the SLTA Writing subscale scores were significantly correlated with ΔLIs in BA6 and 39. Conversely, in the LH-LF-rTMS group, the SLTA Speaking subscale scores were correlated with ΔLI in BA10, and the SLTA Reading subscale scores were significantly correlated with ΔLIs in BA13, 20, 22, and 44. Our results suggest the possibility that fMRI-guided LF-rTMS combined with intensive ST may affect CBF and contribute to the improvement of language function of post-stroke aphasic patients. LF-rTMS to the non-lesional and lesional hemispheres showed a difference in the associations between language performance and CBF. The results indicate that more effective rTMS intervention needs to be explored for patients who show right hemisphere language activation in an fMRI language evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BA:

Brodmann area

fMRI:

Functional magnetic resonance imaging

IFG:

Inferior frontal gyrus

LF:

Low frequency

LH-LF-rTMS:

LF-rTMS to the lesional left hemisphere

LIs:

Laterality indices

PET:

O-15-water positron emission tomography

rCBF:

Regional cerebral blood flow

ROIs:

Region of interest

RH-LF-rTMS:

LF-rTMS to the lesional right hemisphere

rTMS:

Repetitive transcranial magnetic stimulation

SLTA:

The Standard Language Test of Aphasia

SMA:

Supplementary motor area

SPECT:

A single photon emission-computed tomography

ST:

Speech therapy

STG:

Superior temporal gyrus

∆LI:

The change ratio of the LIs

References

  1. Thiel A, Hartmann A, Rubi-Fessen I, Anglade C, Kracht L, Weiduschat N, et al. Effects of noninvasive brain stimulation on language networks and recovery in early poststroke aphasia. Stroke. 2013;44:2240–6. doi:10.1161/STROKEAHA.111.000574. Epub 2013 Jun 27.

    Article  PubMed  Google Scholar 

  2. Naeser MA, Martin PI, Theoret H, Kobayashi M, Fregni F, Nicholas M, et al. TMS suppression of right pars triangularis, but not pars opercularis, improves naming in aphasia. Brain Lang. 2011;119:206–13. doi:10.1016/j.bandl.2011.07.005. Epub 2011 Aug 23.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Hamilton RH, Chrysikou EG, Coslett B. Mechanisms of aphasia recovery after stroke and the role of noninvasive brain stimulation. Brain Lang. 2011;118:40–50. doi:10.1016/j.bandl.2011.02.005. Epub 2011 Apr 2.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Heiss WD, Thiel A. A proposed regional hierarchy in recovery of post-stroke aphasia. Brain Lang. 2006;98:118–23.

    Article  PubMed  Google Scholar 

  5. Saur D, Lange R, Baumgaertner A, Schraknepper V, Willmes K, Rijntjes M, et al. Dynamics of language reorganization after stroke. Brain. 2006;129:1371–84.

    Article  PubMed  Google Scholar 

  6. Richter M, Miltner WH, Straube T. Association between therapy outcome and right-hemispheric activation in chronic aphasia. Brain. 2008;131:1391–401.

    Article  PubMed  Google Scholar 

  7. Finger S, Buckner RL, Buckingham H. Does the right hemisphere take over after damage to Broca’s area? The Barlow case of 1877 and its history. Brain Lang. 2003;85:385–95.

    Article  PubMed  Google Scholar 

  8. Abo M, Kakuda W, Watanabe M, Morooka A, Kawakami K, Senoo A. Effectiveness of low-frequency rTMS and intensive speech therapy in poststroke patients with aphasia: a pilot study based on evaluation by fMRI in relation to type of aphasia. Eur Neurol. 2012;68:199–208. doi:10.1159/000338773. Epub 2012 Aug 29.

    Article  PubMed  Google Scholar 

  9. Kakuda W, Abo M, Uruma G, Kaito N, Watanabe M. Low-frequency rTMS with language therapy over a 3-month period for sensory-dominant aphasia: case series of two post-stroke Japanese patients. Brain Inj. 2010;24:1113–7.

    Article  PubMed  Google Scholar 

  10. Grefkes C, Nowak DA, Wang LE, Dafotakis M, Eickhoff SB, Fink GR. Modulating cortical connectivity in stroke patients by rTMS assessed with fMRI and dynamic causal modeling. NeuroImage. 2010;50:233–42. doi:10.1016/j.neuroimage.2009.12.029. Epub 2009 Dec 18.

    Article  PubMed  Google Scholar 

  11. Grefkes C, Fink GR. Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches. Brain. 2011;134:1264–76. doi:10.1093/brain/awr033. Epub 2011 Mar 16.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Hara T, Kakuda W, Kobayashi K, Momosaki R, Niimi M, Abo M. Regional Cerebral Blood Flow (rCBF) after Low-frequency Repetitive Transcranial Magnetic Stimulation (rTMS) Combined with Intensive Occupational Therapy for Upper Limb Hemiplegia after Stroke : A Study using Single Photon Emission Computed Tomography. Jpn J Rehabil Med. 2013;50:36–42.

    Article  Google Scholar 

  13. Takekawa T, Kakuda W, Uchiyama M, Ikegaya M, Abo M. Brain Perfusion and Upper Limb Motor Function: A Pilot Study on the Correlation between Evolution of Asymmetry in Cerebral Blood Flow and Improvement in Fugl-Meyer Assessment Score after rTMS in Chronic Post-Stroke Patients. J Neuroradiol. 2014;41:177–83. doi:10.1016/j.neurad.2013.06.006. Epub 2013 Jul 22.

    Article  PubMed  Google Scholar 

  14. Kononen M, Kuikka JT, Husso-Saastamoinen M, Vanninen E, Vanninen R, Soimakallio S, et al. Increased Perfusion in Motor Areas after Constraint-Induced Movement Therapy in Chronic Stroke: A Single-Photon Emission Computerized Tomography Study. J Cereb Blood Flow Metabo. 2005;25:1668–74.

    Article  Google Scholar 

  15. Hasegawa T, Kishi H, Shigeno K. A Study on Aphasia Rating Scale. A Method for Overall Assessment of SLTA Results. High Brain Funct Res. 1984;4:638–46.

    Article  Google Scholar 

  16. Wassermann EM. Risk and Safety of Repetitive Transcranial Magnetic Stimulation: Report and Suggested Guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5-7, 1996. Electroencephalogr Clin Neurophysiol. 1998;108:1–16.

    Article  CAS  PubMed  Google Scholar 

  17. Homan RW, Herman J, Purdy P. Cerebral Location of International 10–20 System Electrode Placement. Electroencephalogr Clin Neurophysiol. 1987;66:376–82.

    Article  CAS  PubMed  Google Scholar 

  18. Jennum P, Friberg L, Fuglsang-Frederiksen A, Dam M. Speech Localization using Repetitive Transcranial Magnetic Stimulation. Neurology. 1994;44:269–73.

    Article  CAS  PubMed  Google Scholar 

  19. Ohnishi T, Matsuda H, Hashimoto T, Kunihiro T, Nishikawa M, Uema T, et al. Abnormal Regional Cerebral Blood Flow in Childhood Autism. Brain. 2000;123(Pt 9):1838–44.

    Article  PubMed  Google Scholar 

  20. Friston K, Holmes A, Worsley K, Poline JB, Frith C, Frackowiak R. Statistical Parametric Maps in Functional Imaging : A General Linear Approach. Hum Brain Mapp. 1995;2:189–210.

    Article  Google Scholar 

  21. Ashburner J, Friston KJ. Nonlinear Spatial Normalization using Basis Functions. Hum Brain Mapp. 1999;7:254–66.

    Article  CAS  PubMed  Google Scholar 

  22. Vandenbroucke JP, von Elm E, Altman DG, Gøtzsche PC, Mulrow CD, Pocock SJ, et al. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and Elaboration. Epidemiology. 2007;18:805–35.

    Article  PubMed  Google Scholar 

  23. Naeser MA, Martin PI, Nicholas M, Baker EH, Seekins H, Helm-Estabrooks N, et al. Improved Naming after TMS Treatments in a Chronic, Global Aphasia Patient—Case Report. Neurocase. 2005;11:182–93.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Naeser MA, Martin PI, Nicholas M, Baker EH, Seekins H, Kobayashi M, et al. Improved Picture Naming in Chronic Aphasia after TMS to Part of Right Broca’s Area: An Open-Protocol Study. Brain Lang. 2005;93:95–105.

    Article  PubMed  Google Scholar 

  25. Takeuchi N, Chuma T, Matsuo Y, Watanabe I, Ikoma K. Repetitive Transcranial Magnetic Stimulation of Contralesional Primary Motor Cortex Improves Hand Function after Stroke. Stroke. 2005;36:2681–6.

    Article  PubMed  Google Scholar 

  26. Weiduschat N, Thiel A, Rubi-Fessen I, Hartmann A, Kessler J, Merl P, et al. Effects of Repetitive Transcranial Magnetic Stimulation in Aphasic Stroke: A Randomized Controlled Pilot Study. Stroke. 2011;42:409–15. doi:10.1161/STROKEAHA.110.597864. Epub 2010 Dec 16.

    Article  PubMed  Google Scholar 

  27. Ohyama M, Senda M, Kitamura S, Ishii K, Mishina M, Terashi A. Role of the Nondominant Hemisphere and Undamaged Area during Word Repetition in Poststroke Aphasics. A PET Activation Study. Stroke. 1996;27:897–903.

    Article  CAS  PubMed  Google Scholar 

  28. Abo M, Senoo A, Watanabe S, Miyano S, Doseki K, Sasaki N, et al. Language-Related Brain Function during Word Repetition in Post-Stroke Aphasics. Neuroreport. 2004;15:1891–4.

    Article  PubMed  Google Scholar 

  29. Abo M, Takao H, Hashimoto K, Suzuki M, Kaito N. Re-Organization of Language Function within the Right Hemisphere. Eur J Neurol. 2007;14:e7–8.

    Article  CAS  PubMed  Google Scholar 

  30. Price CJ, Crinion J. The Latest on Functional Imaging Studies of Aphasic Stroke. Curr Opin Neurol. 2005;18:429–34.

    Article  PubMed  Google Scholar 

  31. Berthier ML, García-Casares N, Walsh SF, Nabrozidis A, Ruíz de Mier RJ, Green C, et al. Recovery from Post-Stroke Aphasia: Lessons from Brain Imaging and Implications for Rehabilitation and Biological Treatments. Discov Med. 2011;12:275–89.

  32. Saur D, Kreher BW, Schnell S, Kümmerer D, Kellmeyer P, Vry MS, et al. Ventral and Dorsal Pathways for Language. Proc Natl Acad Sci U S A. 2008;105:18035–40. doi:10.1073/pnas.0805234105. Epub 2008 Nov 12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Vigneau M, Beaucousin V, Hervé PY, Duffau H, Crivello F, Houdé O, et al. Meta-Analyzing Left Hemisphere Language Areas: Phonology, Semantics, and Sentence Processing. NeuroImage. 2006;30:1414–32.

  34. Papagno C. Naming and the Role of the Uncinate Fasciculus in Language Function. Curr Neurol Neurosci Rep. 2011;11:553–9. doi:10.1007/s11910-011-0219-6.

    Article  PubMed  Google Scholar 

  35. Duffau H, Gatignol P, Moritz-Gasser S, Mandonnet E. Is the Left Uncinated Fasciculus Essential for Language? A Cerebral Stimulation Study. J Neurol. 2009;256:382–9. doi:10.1007/s00417-009-0053-9. Epub 2009 Mar 6.

    Article  PubMed  Google Scholar 

  36. de Boissezon X, Démonet JF, Puel M, Marie N, Raboyeau G, Albucher JF, et al. Subcortical Aphasia: A Longitudinal PET Study. Stroke. 2005;36:1467–73.

  37. Paulesu E, Frith CD, Frackowiak RS. The Neural Correlates of the Verbal Component of Working Memory. Nature. 1993;362:342–5.

    Article  CAS  PubMed  Google Scholar 

  38. Martin PI, Naeser MA, Ho M, Doron KW, Kurland J, Kaplan J, et al. Overt Naming fMRI Pre- and Post-TMS: Two Nonfluent Aphasia Patients, with and without Improved Naming Post-TMS. Brain Lang. 2009;111:20–35. doi:10.1016/j.bandl.2009.07.007. Epub 2009 Aug 19. Erratum in: Brain Lang. 2010 Feb. 112(2):135. Alonso, Miguel [added].

    Article  PubMed Central  PubMed  Google Scholar 

  39. Dronkers NF, Wilkins DP, Van Valin Jr RD, Redfern BB, Jaeger JJ. Lesion Analysis of the Brain Areas Involved in Language Comprehension. Cognition. 2004;92:145–77.

    Article  PubMed  Google Scholar 

  40. Eckert MA, Menon V, Walczak A, Ahlstrom J, Denslow S, Horwitz A, et al. At the Heart of the Ventral Attention System: The Right Anterior Insula. Hum Brain Mapp. 2009;30:2530–41. doi:10.1002/hbm.20688.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Raboyeau G, De Boissezon X, Marie N, Balduyck S, Puel M, Bézy C, et al. Right Hemisphere Activation in Recovery from Aphasia: Lesion Effect or Function Recruitment? Neurology. 2008;70:290–8. doi:10.1212/01.wnl.0000287115.85956.87.

    Article  CAS  PubMed  Google Scholar 

  42. Specht K, Zahn R, Willmes K, Weis S, Holtel C, Krause BJ, et al. Joint Independent Component Analysis of Structural and Functional Images Reveals Complex Patterns of Functional Reorganisation in Stroke Aphasia. NeuroImage. 2009;47:2057–63. doi:10.1016/j.neuroimage.2009.06.011. Epub 2009 Jun 11.

    Article  PubMed  Google Scholar 

  43. Khedr EM, Abo El-Fetoh N, Ali AM, El-Hammady DH, Khalifa H, Atta H, et al. Dual-Hemisphere Repetitive Transcranial Magnetic Stimulation for Rehabilitation of Poststroke Aphasia: A Randomized, Double-Blind Clinical Trial. Neurorehabil Neural Repair. 2014;28:740–50. doi:10.1177/1545968314521009. Epub 2014 Feb 6.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the participation of the patients in the study. This work was supported by the Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science.

Conflict of Interest

Takatoshi Hara, Masahiro Abo, MD, Kentaro Kobayashi, Motoi Watanabe, Wataru Kakuda and Atushi Senoo declare that they have no conflict of interest.

Compliance with Ethics Requirements

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008. Informed consent was obtained from all patients for being included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Abo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hara, T., Abo, M., Kobayashi, K. et al. Effects of Low-Frequency Repetitive Transcranial Magnetic Stimulation Combined with Intensive Speech Therapy on Cerebral Blood Flow in Post-Stroke Aphasia. Transl. Stroke Res. 6, 365–374 (2015). https://doi.org/10.1007/s12975-015-0417-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-015-0417-7

Keywords

Navigation