Skip to main content

Advertisement

Log in

Extending the Time Window for Endovascular and Pharmacological Reperfusion

  • SI: Challenges and Controversies in Translational Stroke Research
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Pharmacological and device-induced reperfusion therapies have demonstrated increasingly positive outcomes regarding both reperfusion efficacy and 90-day functional outcomes after acute ischemic stroke. However, presently, only a minority of patients are eligible for these treatments. Less than 10 % of all ischemic stroke patients receive intravenous thrombolysis in most centers and it has been projected that only approximately 7–15 % of ischemic stroke patients are eligible for acute endovascular intervention. Making these effective therapies safely available to a much larger number of patients is critical for expanding the benefits of acute ischemic stroke treatment. In this article, we summarize the key results from the clinical trials, challenges, and exciting novel opportunities to increase patient eligibility for these therapies as well as for better outcomes for stroke patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Puyal J, Ginet V, Clarke PG. Multiple interacting cell death mechanisms in the mediation of excitotoxicity and ischemic brain damage: a challenge for neuroprotection. Prog Neurobiol. 2013;105:24–48. doi:10.1016/j.pneurobio.2013.03.002.

    Article  PubMed  Google Scholar 

  2. Schabitz WR, Fisher M. Perspectives on neuroprotective stroke therapy. Biochem Soc Trans. 2006;34:1271–6. doi:10.1042/BST0341271.

    Article  PubMed  Google Scholar 

  3. Henninger N, Kumar R, Fisher M. Acute ischemic stroke therapy. Expert Rev Cardiovasc Ther. 2010;8:1389–98. doi:10.1586/erc.10.128.

    Article  PubMed  Google Scholar 

  4. Savitz SI, Fisher M. Future of neuroprotection for acute stroke: in the aftermath of the SAINT trials. Ann Neurol. 2007;61:396–402. doi:10.1002/ana.21127.

    Article  CAS  PubMed  Google Scholar 

  5. Stroke therapy academic industry roundtable (STAIR). Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke. 1999;30(12):2752–8.

  6. Stroke therapy academic industry roundtable II (STAIR-II). Recommendations for clinical trial evaluation of acute stroke therapies. Stroke. 2001;32(7):1598–606.

  7. Fisher M, Feuerstein G, Howells DW, Hurn PD, Kent TA, Savitz SI, et al. Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke. 2009;40:2244–50. doi:10.1161/STROKEAHA.108.541128.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Saver JL, Jovin TG, Smith WS, Albers GW, Baron JC, Boltze J, et al. Stroke treatment academic industry roundtable: research priorities in the assessment of neurothrombectomy devices. Stroke. 2013;44:3596–601. doi:10.1161/STROKEAHA.113.002769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sena E, van der Worp HB, Howells D, Macleod M. How can we improve the pre-clinical development of drugs for stroke? Trends Neurosci. 2007;30:433–9. doi:10.1016/j.tins.2007.06.009.

    Article  CAS  PubMed  Google Scholar 

  10. Llovera G, Hofmann K, Roth S, Salas-Perdomo A, Ferrer-Ferrer M, Perego C, et al. Results of a preclinical randomized controlled multicenter trial (pRCT): anti-CD49d treatment for acute brain ischemia. Sci Transl Med. 2015;7:299ra121. doi:10.1126/scitranslmed.aaa9853.

    Article  PubMed  Google Scholar 

  11. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med. 1995;333:1581–7.

  12. Hacke W, Kaste M, Bluhmki E, Brozman M, Davalos A, Guidetti D, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 2008;359:1317–29. doi:10.1056/NEJMoa0804656.

    Article  CAS  PubMed  Google Scholar 

  13. Emberson J, Lees KR, Lyden P, Blackwell L, Albers G, Bluhmki E, et al. Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials. Lancet. 2014;384:1929–35. doi:10.1016/S0140-6736(14)60584-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Albers GW, Goyal M, Jahan R, Bonafe A, Diener HC, Levy EI, et al. Relationships between imaging assessments and outcomes in Solitaire with the intention for thrombectomy as primary endovascular treatment for acute ischemic stroke. Stroke. 2015;46:2786–94. doi:10.1161/STROKEAHA.115.010710.

    Article  CAS  PubMed  Google Scholar 

  15. Parsons M, Spratt N, Bivard A, Campbell B, Chung K, Miteff F, et al. A randomized trial of tenecteplase versus alteplase for acute ischemic stroke. N Engl J Med. 2012;366:1099–107. doi:10.1056/NEJMoa1109842.

    Article  CAS  PubMed  Google Scholar 

  16. Berkhemer OA, Fransen PS, Beumer D, van den Berg LA, Lingsma HF, Yoo AJ, et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med. 2015;372:11–20. doi:10.1056/NEJMoa1411587.

    Article  PubMed  Google Scholar 

  17. Goyal M, Demchuk AM, Menon BK, Eesa M, Rempel JL, Thornton J, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med. 2015;372:1019–30. doi:10.1056/NEJMoa1414905.

    Article  CAS  PubMed  Google Scholar 

  18. Saver JL, Goyal M, Bonafe A, Diener HC, Levy EI, Pereira VM, et al. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N Engl J Med. 2015. doi:10.1056/NEJMoa1415061.

    PubMed Central  Google Scholar 

  19. Campbell BC, Mitchell PJ, Kleinig TJ, Dewey HM, Churilov L, Yassi N, et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med. 2015;372:1009–18. doi:10.1056/NEJMoa1414792.

    Article  CAS  PubMed  Google Scholar 

  20. Jovin TG, Chamorro A, Cobo E, de Miquel MA, Molina CA, Rovira A, et al. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N Engl J Med. 2015;372:2296–306. doi:10.1056/NEJMoa1503780.

    Article  CAS  PubMed  Google Scholar 

  21. Broderick JP, Palesch YY, Demchuk AM, Yeatts SD, Khatri P, Hill MD, et al. Endovascular therapy after intravenous t-PA versus t-PA alone for stroke. N Engl J Med. 2013;368:893–903. doi:10.1056/NEJMoa1214300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shen Q, Ren H, Cheng H, Fisher M, Duong TQ. Functional, perfusion and diffusion MRI of acute focal ischemic brain injury. J Cereb Blood Flow Metab. 2005;25:1265–79. doi:10.1038/sj.jcbfm.9600132.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Fisher M. The ischemic penumbra: a new opportunity for neuroprotection. Cerebrovasc Dis. 2006;21 Suppl 2:64–70. doi:10.1159/000091705.

    Article  PubMed  Google Scholar 

  24. Saver JL. Time is brain--quantified. Stroke. 2006;37:263–6. doi:10.1161/01.STR.0000196957.55928.ab.

    Article  PubMed  Google Scholar 

  25. Sandercock P, Wardlaw JM, Lindley RI, Dennis M, Cohen G, Murray G, et al. The benefits and harms of intravenous thrombolysis with recombinant tissue plasminogen activator within 6 h of acute ischaemic stroke (the third international stroke trial [IST-3]): a randomised controlled trial. Lancet. 2012;379:2352–63. doi:10.1016/S0140-6736(12)60768-5.

    Article  PubMed  Google Scholar 

  26. Kidwell CS, Jahan R, Gornbein J, Alger JR, Nenov V, Ajani Z, et al. A trial of imaging selection and endovascular treatment for ischemic stroke. N Engl J Med. 2013;368:914–23. doi:10.1056/NEJMoa1212793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nagakane Y, Christensen S, Brekenfeld C, Ma H, Churilov L, Parsons MW, et al. EPITHET: positive result after reanalysis using baseline diffusion-weighted imaging/perfusion-weighted imaging co-registration. Stroke. 2011;42:59–64. doi:10.1161/STROKEAHA.110.580464.

    Article  PubMed  Google Scholar 

  28. Wheeler HM, Mlynash M, Inoue M, Tipirneni A, Liggins J, Zaharchuk G, et al. Early diffusion-weighted imaging and perfusion-weighted imaging lesion volumes forecast final infarct size in DEFUSE 2. Stroke. 2013;44:681–5. doi:10.1161/STROKEAHA.111.000135.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lansberg MG, Cereda CW, Mlynash M, Mishra NK, Inoue M, Kemp S, et al. Response to endovascular reperfusion is not time-dependent in patients with salvageable tissue. Neurology. 2015;85:708–14. doi:10.1212/WNL.0000000000001853.

    Article  PubMed  Google Scholar 

  30. Wintermark M, Flanders AE, Velthuis B, Meuli R, van Leeuwen M, Goldsher D, et al. Perfusion-CT assessment of infarct core and penumbra: receiver operating characteristic curve analysis in 130 patients suspected of acute hemispheric stroke. Stroke. 2006;37:979–85. doi:10.1161/01.STR.0000209238.61459.39.

    Article  PubMed  Google Scholar 

  31. Lin L, Bivard A, Levi CR, Parsons MW. Comparison of computed tomographic and magnetic resonance perfusion measurements in acute ischemic stroke: back-to-back quantitative analysis. Stroke. 2014;45:1727–32. doi:10.1161/STROKEAHA.114.005419.

    Article  PubMed  Google Scholar 

  32. Liebeskind DS, Jahan R, Nogueira RG, Jovin TG, Lutsep HL, Saver JL. Serial Alberta Stroke Program early CT score from baseline to 24 hours in Solitaire Flow Restoration with the Intention for Thrombectomy study: a novel surrogate end point for revascularization in acute stroke. Stroke. 2014;45:723–7. doi:10.1161/STROKEAHA.113.003914.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bratane BT, Cui H, Cook DJ, Bouley J, Tymianski M, Fisher M. Neuroprotection by freezing ischemic penumbra evolution without cerebral blood flow augmentation with a postsynaptic density-95 protein inhibitor. Stroke. 2011;42:3265–70. doi:10.1161/STROKEAHA.111.618801.

    Article  CAS  PubMed  Google Scholar 

  34. Henninger N, Bratane BT, Bastan B, Bouley J, Fisher M. Normobaric hyperoxia and delayed tPA treatment in a rat embolic stroke model. J Cereb Blood Flow Metab. 2009;29:119–29. doi:10.1038/jcbfm.2008.104.

    Article  CAS  PubMed  Google Scholar 

  35. Badhiwala JH, Nassiri F, Alhazzani W, Selim MH, Farrokhyar F, Spears J, et al. Endovascular thrombectomy for acute ischemic stroke: a meta-analysis. JAMA. 2015;314:1832–43. doi:10.1001/jama.2015.13767.

    Article  CAS  PubMed  Google Scholar 

  36. Meyers PM, Schumacher HC, Connolly Jr ES, Heyer EJ, Gray WA, Higashida RT. Current status of endovascular stroke treatment. Circulation. 2011;123:2591–601. doi:10.1161/CIRCULATIONAHA.110.971564.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cloft HJ, Rabinstein A, Lanzino G, Kallmes DF. Intra-arterial stroke therapy: an assessment of demand and available work force. AJNR Am J Neuroradiol. 2009;30:453–8. doi:10.3174/ajnr.A1462.

    Article  CAS  PubMed  Google Scholar 

  38. Wardlaw JM, Dennis MS. Thrombectomy for acute ischemic stroke. JAMA. 2015;314:1803–5. doi:10.1001/jama.2015.14674.

    Article  CAS  PubMed  Google Scholar 

  39. Kleindorfer D, Lindsell CJ, Brass L, Koroshetz W, Broderick JP. National US estimates of recombinant tissue plasminogen activator use: ICD-9 codes substantially underestimate. Stroke. 2008;39:924–8. doi:10.1161/STROKEAHA.107.490375.

    Article  PubMed  Google Scholar 

  40. Asplund K, Glader EL, Norrving B, Eriksson M. Effects of extending the time window of thrombolysis to 4.5 hours: observations in the Swedish stroke register (riks-stroke). Stroke. 2011;42:2492–7. doi:10.1161/STROKEAHA.111.618587.

    Article  PubMed  Google Scholar 

  41. Adeoye O, Hornung R, Khatri P, Kleindorfer D. Recombinant tissue-type plasminogen activator use for ischemic stroke in the United States: a doubling of treatment rates over the course of 5 years. Stroke. 2011;42:1952–5. doi:10.1161/STROKEAHA.110.612358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. O’Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW. 1,026 experimental treatments in acute stroke. Ann Neurol. 2006;59:467–77. doi:10.1002/ana.20741.

    Article  PubMed  Google Scholar 

  43. Minnerup J, Sutherland BA, Buchan AM, Kleinschnitz C. Neuroprotection for stroke: current status and future perspectives. Int J Mol Sci. 2012;13:11753–72. doi:10.3390/ijms130911753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Philip M, Benatar M, Fisher M, Savitz SI. Methodological quality of animal studies of neuroprotective agents currently in phase II/III acute ischemic stroke trials. Stroke. 2009;40:577–81. doi:10.1161/STROKEAHA.108.524330.

    Article  CAS  PubMed  Google Scholar 

  45. Tymianski M. Can molecular and cellular neuroprotection be translated into therapies for patients?: yes, but not the way we tried it before. Stroke. 2010;41:S87–90. doi:10.1161/STROKEAHA.110.595496.

    Article  PubMed  Google Scholar 

  46. Mehra M, Henninger N, Hirsch JA, Chueh J, Wakhloo AK, Gounis MJ. Preclinical acute ischemic stroke modeling. J Neurointerv Surg. 2012;4:307–13. doi:10.1136/neurintsurg-2011-010101.

    Article  PubMed  Google Scholar 

  47. Henninger N, Sicard KM, Schmidt KF, Bardutzky J, Fisher M. Comparison of ischemic lesion evolution in embolic versus mechanical middle cerebral artery occlusion in Sprague Dawley rats using diffusion and perfusion imaging. Stroke. 2006;37:1283–7. doi:10.1161/01.STR.0000217223.72193.98.

    Article  PubMed  Google Scholar 

  48. Manning NW, Campbell BC, Oxley TJ, Chapot R. Acute ischemic stroke: time, penumbra, and reperfusion. Stroke. 2014;45:640–4. doi:10.1161/STROKEAHA.113.003798.

    Article  PubMed  Google Scholar 

  49. Marosfoi MG, Korin N, Gounis MJ, Uzun O, Vedantham S, Langan ET, et al. Shear-activated nanoparticle aggregates combined with temporary endovascular bypass to treat large vessel occlusion. Stroke. 2015. doi:10.1161/STROKEAHA.115.011063.

    Google Scholar 

  50. Henninger N, Bouley J, Nelligan JM, Sicard KM, Fisher M. Normobaric hyperoxia delays perfusion/diffusion mismatch evolution, reduces infarct volume, and differentially affects neuronal cell death pathways after suture middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab. 2007;27:1632–42. doi:10.1038/sj.jcbfm.9600463.

    Article  PubMed  Google Scholar 

  51. Kim HY, Singhal AB, Lo EH. Normobaric hyperoxia extends the reperfusion window in focal cerebral ischemia. Ann Neurol. 2005;57:571–5. doi:10.1002/ana.20430.

    Article  PubMed  Google Scholar 

  52. Ip HL, Liebeskind DS. The future of ischemic stroke: flow from prehospital neuroprotection to definitive reperfusion. Interv Neurol. 2014;2:105–17. doi:10.1159/000357164.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Jung JE, Kim GS, Chen H, Maier CM, Narasimhan P, Song YS, et al. Reperfusion and neurovascular dysfunction in stroke: from basic mechanisms to potential strategies for neuroprotection. Mol Neurobiol. 2010;41:172–9. doi:10.1007/s12035-010-8102-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bardutzky J, Meng X, Bouley J, Duong TQ, Ratan R, Fisher M. Effects of intravenous dimethyl sulfoxide on ischemia evolution in a rat permanent occlusion model. J Cereb Blood Flow Metab. 2005;25:968–77. doi:10.1038/sj.jcbfm.9600095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Henninger N, Fisher M. Stimulating circle of Willis nerve fibers preserves the diffusion-perfusion mismatch in experimental stroke. Stroke. 2007;38:2779–86. doi:10.1161/STROKEAHA.107.485581.

    Article  PubMed  Google Scholar 

  56. Bratane BT, Bouley J, Schneider A, Bastan B, Henninger N, Fisher M. Granulocyte-colony stimulating factor delays PWI/DWI mismatch evolution and reduces final infarct volume in permanent-suture and embolic focal cerebral ischemia models in the rat. Stroke. 2009;40:3102–6. doi:10.1161/STROKEAHA.109.553958.

    Article  CAS  PubMed  Google Scholar 

  57. Saver JL, Starkman S, Eckstein M, Stratton SJ, Pratt FD, Hamilton S, et al. Prehospital use of magnesium sulfate as neuroprotection in acute stroke. N Engl J Med. 2015;372:528–36. doi:10.1056/NEJMoa1408827.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ebinger M, Winter B, Wendt M, Weber JE, Waldschmidt C, Rozanski M, et al. Effect of the use of ambulance-based thrombolysis on time to thrombolysis in acute ischemic stroke: a randomized clinical trial. JAMA. 2014;311:1622–31. doi:10.1001/jama.2014.2850.

    Article  CAS  PubMed  Google Scholar 

  59. Audebert HJ, Saver JL, Starkman S, Lees KR, Endres M. Prehospital stroke care: new prospects for treatment and clinical research. Neurology. 2013;81:501–8. doi:10.1212/WNL.0b013e31829e0fdd.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Korin N, Kanapathipillai M, Matthews BD, Crescente M, Brill A, Mammoto T, et al. Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels. Science. 2012;337:738–42. doi:10.1126/science.1217815.

    Article  CAS  PubMed  Google Scholar 

  61. van der Worp HB, Macleod MR, Bath PM, Demotes J, Durand-Zaleski I, Gebhardt B, et al. EuroHYP-1: European multicenter, randomized, phase III clinical trial of therapeutic hypothermia plus best medical treatment vs. best medical treatment alone for acute ischemic stroke. Int J Stroke. 2014;9:642–5. doi:10.1111/ijs.12294.

    Article  PubMed  Google Scholar 

  62. Horn CM, Sun CH, Nogueira RG, Patel VN, Krishnan A, Glenn BA, et al. Endovascular Reperfusion and Cooling in Cerebral Acute Ischemia (ReCCLAIM I). J Neurointerv Surg. 2014;6:91–5. doi:10.1136/neurintsurg-2013-010656.

    Article  PubMed  Google Scholar 

  63. van der Worp HB, Sena ES, Donnan GA, Howells DW, Macleod MR. Hypothermia in animal models of acute ischaemic stroke: a systematic review and meta-analysis. Brain. 2007;130:3063–74. doi:10.1093/brain/awm083.

    Article  PubMed  Google Scholar 

  64. Donnino MW, Andersen LW, Berg KM, Reynolds JC, Nolan JP, Morley PT, et al. Temperature management after cardiac arrest: an advisory statement by the Advanced Life Support Task Force of the International Liaison Committee on Resuscitation and the American Heart Association Emergency Cardiovascular Care Committee and the Council on Cardiopulmonary, Critical Care. Perioper Resuscitation Circ. 2015. doi:10.1161/CIR.0000000000000313.

    Google Scholar 

  65. Kuliha M, Roubec M, Jonszta T, Krajca J, Czerny D, Krajina A, et al. Safety and efficacy of endovascular sonolysis using the EkoSonic endovascular system in patients with acute stroke. AJNR Am J Neuroradiol. 2013;34:1401–6. doi:10.3174/ajnr.A3416.

    Article  CAS  PubMed  Google Scholar 

  66. Schellinger PD, Alexandrov AV, Barreto AD, Demchuk AM, Tsivgoulis G, Kohrmann M, et al. Combined lysis of thrombus with ultrasound and systemic tissue plasminogen activator for emergent revascularization in acute ischemic stroke (CLOTBUST-ER): design and methodology of a multinational phase 3 trial. Int J Stroke. 2015;10:1141–8. doi:10.1111/ijs.12536.

    Article  PubMed  Google Scholar 

  67. Fisher M, Saver JL. Future directions of acute ischaemic stroke therapy. Lancet Neurol. 2015;14:758–67. doi:10.1016/S1474-4422(15)00054-X.

    Article  PubMed  Google Scholar 

  68. dela Pena IC, Yoo A, Tajiri N, Acosta SA, Ji X, Kaneko Y, et al. Granulocyte colony-stimulating factor attenuates delayed tPA-induced hemorrhagic transformation in ischemic stroke rats by enhancing angiogenesis and vasculogenesis. J Cereb Blood Flow Metab. 2015;35:338–46. doi:10.1038/jcbfm.2014.208.

    Article  Google Scholar 

  69. Iadecola C, Anrather J. The immunology of stroke: from mechanisms to translation. Nat Med. 2011;17:796–808. doi:10.1038/nm.2399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sanderson TH, Reynolds CA, Kumar R, Przyklenk K, Huttemann M. Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol. 2013;47:9–23. doi:10.1007/s12035-012-8344-z.

    Article  CAS  PubMed  Google Scholar 

  71. Warach S, Latour LL. Evidence of reperfusion injury, exacerbated by thrombolytic therapy, in human focal brain ischemia using a novel imaging marker of early blood-brain barrier disruption. Stroke. 2004;35:2659–61. doi:10.1161/01.STR.0000144051.32131.09.

    Article  PubMed  Google Scholar 

  72. Leigh R, Jen SS, Hillis AE, Krakauer JW, Barker PB. Pretreatment blood-brain barrier damage and post-treatment intracranial hemorrhage in patients receiving intravenous tissue-type plasminogen activator. Stroke. 2014;45:2030–5. doi:10.1161/STROKEAHA.114.005249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Berger C, Fiorelli M, Steiner T, Schabitz WR, Bozzao L, Bluhmki E, et al. Hemorrhagic transformation of ischemic brain tissue: asymptomatic or symptomatic? Stroke. 2001;32:1330–5.

    Article  CAS  PubMed  Google Scholar 

  74. Kent DM, Hinchey J, Price LL, Levine SR, Selker HP. In acute ischemic stroke, are asymptomatic intracranial hemorrhages clinically innocuous? Stroke. 2004;35:1141–6. doi:10.1161/01.STR.0000125712.02090.6e.

    Article  PubMed  Google Scholar 

  75. Lei C, Wu B, Liu M, Chen Y. Asymptomatic hemorrhagic transformation after acute ischemic stroke: is it clinically innocuous? J Stroke Cerebrovasc Dis. 2014;23:2767–72. doi:10.1016/j.jstrokecerebrovasdis.2014.06.024.

    Article  PubMed  Google Scholar 

  76. Park JH, Ko Y, Kim WJ, Jang MS, Yang MH, Han MK, et al. Is asymptomatic hemorrhagic transformation really innocuous? Neurology. 2012;78:421–6. doi:10.1212/WNL.0b013e318245d22c.

    Article  CAS  PubMed  Google Scholar 

  77. Dzialowski I, Pexman JH, Barber PA, Demchuk AM, Buchan AM, Hill MD. Asymptomatic hemorrhage after thrombolysis may not be benign: prognosis by hemorrhage type in the Canadian Alteplase for Stroke Effectiveness Study registry. Stroke. 2007;38:75–9. doi:10.1161/01.STR.0000251644.76546.62.

    Article  PubMed  Google Scholar 

  78. Zhu Z, Fu Y, Tian D, Sun N, Han W, Chang G, et al. Combination of the immune modulator fingolimod with alteplase in acute ischemic stroke: a pilot trial. Circulation. 2015;132:1104–12. doi:10.1161/CIRCULATIONAHA.115.016371.

    Article  CAS  PubMed  Google Scholar 

  79. Schwamm LH, Holloway RG, Amarenco P, Audebert HJ, Bakas T, Chumbler NR, et al. A review of the evidence for the use of telemedicine within stroke systems of care: a scientific statement from the American Heart Association/American Stroke Association. Stroke. 2009;40:2616–34. doi:10.1161/STROKEAHA.109.192360.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Fisher.

Ethics declarations

Funding

This study was funded by institutional grants.

Conflict of Interest

The authors declare that they have no competing interests.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Disclosures and Study Funding

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henninger, N., Fisher, M. Extending the Time Window for Endovascular and Pharmacological Reperfusion. Transl. Stroke Res. 7, 284–293 (2016). https://doi.org/10.1007/s12975-015-0444-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-015-0444-4

Keywords

Navigation