Skip to main content

Advertisement

Log in

Ischemic Preconditioning Alleviates Cerebral Ischemia–Reperfusion Injury by Interfering With Glycocalyx

  • Research
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Ischemic preconditioning (IPC) could protect the blood–brain barrier (BBB), but the underlying mechanism is not well understood. This preclinical study aimed to investigate whether glycocalyx could be involved in the neuroprotective effect of IPC on cerebral ischemia–reperfusion injury (IRI) and the possible mechanism in rat middle cerebral artery occlusion/reperfusion (MCAO/R) model. Neurological deficit scores, infarct volume, and brain edema were measured to assess the neuroprotection of IPC. Several serum biomarkers related to glycocalyx damage, such as hyaluronic acid (HA), heparan sulfate (HS), and syndecan-1 (SYND1), were evaluated, and their changes were normalized to the ratio of postoperative/preoperative concentration. Western blot and immunofluorescence were used to evaluate the content and cellular location of HA-related metabolic enzymes. This study found that (1) IPC improved brain infarction and edema, neurological impairment, and BBB disruption in IRI rats; (2) IPC significantly up-regulated HA ratio and down-regulated HS ratio, but did not affect SYND1 ratio compared with the IRI group. Moreover, the increased HA ratio was negatively related to brain edema and neurological deficit score. (3) IPC affected HA metabolism by up-regulating hyaluronate synthase-1 and matrix metalloproteinase-2, and down-regulating hyaluronidase-1 in brain tissue. Together, this is the first report that the neuroprotective effect of IPC on IRI may be mediated through interfering with glycocalyx in the MCAO/R model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data underlying this article will be shared upon reasonable request to the corresponding author.

References

  1. Pico F, Lapergue B, Ferrigno M, et al. Effect of in-hospital remote ischemic perconditioning on brain infarction growth and clinical outcomes in patients with acute ischemic stroke: the RESCUE BRAIN randomized clinical trial. JAMA Neurol. 2020;77:725–34. https://doi.org/10.1001/jamaneurol.2020.0326.

    Article  PubMed  Google Scholar 

  2. Przykaza Ł. Understanding the connection between common stroke comorbidities, their associated inflammation, and the course of the cerebral ischemia/reperfusion cascade. Front Immunol. 2021;12:782569. https://doi.org/10.3389/fimmu.2021.782569.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Bernardo-Castro S, Sousa J, Brás A, et al. Pathophysiology of blood-brain barrier permeability throughout the different stages of ischemic stroke and its implication on hemorrhagic transformation and recovery. Front Neurol. 2020;11:594672. https://doi.org/10.3389/fneur.2020.594672.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kutuzov N, Flyvbjerg H, Lauritzen M. Contributions of the glycocalyx, endothelium, and extravascular compartment to the blood-brain barrier. Proc Natl Acad Sci USA. 2018;115:E9429–38. https://doi.org/10.1073/pnas.1802155115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Abdullahi W, Tripathi D, Ronaldson P. Blood-brain barrier dysfunction in ischemic stroke: targeting tight junctions and transporters for vascular protection. Am J Physiol Cell Physiol. 2018;315:C343–56. https://doi.org/10.1152/ajpcell.00095.2018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Liu S, Agalliu D, Yu C, et al. The role of pericytes in blood-brain barrier function and stroke. Curr Pharm Des. 2012;18:3653–62. https://doi.org/10.2174/138161212802002706.

    Article  PubMed  CAS  Google Scholar 

  7. Ronaldson P, Davis T. Blood-brain barrier integrity and glial support: mechanisms that can be targeted for novel therapeutic approaches in stroke. Curr Pharm Des. 2012;18:3624–44. https://doi.org/10.2174/138161212802002625.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Schött U, Solomon C, Fries D, et al. The endothelial glycocalyx and its disruption, protection and regeneration: a narrative review. Scand J Trauma Resusc Emerg Med. 2016;24:48. https://doi.org/10.1186/s13049-016-0239-y.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Reitsma S, Slaaf D, Vink H, et al. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch. 2007;454:345–59. https://doi.org/10.1007/s00424-007-0212-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Abassi Z, Armaly Z, Heyman S. Glycocalyx degradation in ischemia-reperfusion injury. Am J Pathol. 2020;190:752–67. https://doi.org/10.1016/j.ajpath.2019.08.019.

    Article  PubMed  CAS  Google Scholar 

  11. Li X, Zhu J, Liu K, et al. Heparin ameliorates cerebral edema and improves outcomes following status epilepticus by protecting endothelial glycocalyx in mice. Exp Neurol. 2020;330:113320. https://doi.org/10.1016/j.expneurol.2020.113320.

    Article  PubMed  CAS  Google Scholar 

  12. Li S, Hafeez A, Noorulla F, et al. Preconditioning in neuroprotection: from hypoxia to ischemia. Prog Neurobiol. 2017;157:79–91. https://doi.org/10.1016/j.pneurobio.2017.01.001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Sprick J, Mallet R, Przyklenk K, et al. Ischaemic and hypoxic conditioning: potential for protection of vital organs. Exp Physiol. 2019;104:278–94. https://doi.org/10.1113/ep087122.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Petullo D, Masonic K, Lincoln C, et al. Model development and behavioral assessment of focal cerebral ischemia in rats. Life Sci. 1999;64:1099–108. https://doi.org/10.1016/s0024-3205(99)00038-7.

    Article  PubMed  CAS  Google Scholar 

  15. Zhu J, Li X, Yin J, et al. Glycocalyx degradation leads to blood-brain barrier dysfunction and brain edema after asphyxia cardiac arrest in rats. J Cereb Blood Flow Metab. 2018;38:1979–92. https://doi.org/10.1177/0271678x17726062.

    Article  PubMed  CAS  Google Scholar 

  16. Rancan L, Simón C, Sánchez Pedrosa G, et al. Glycocalyx degradation after pulmonary transplantation surgery. Eur Surg Res Eur Chir Forsch Rech Chirurg Eur. 2018;59:115–25. https://doi.org/10.1159/000489492.

    Article  CAS  Google Scholar 

  17. Bongoni A, Lu B, McRae J, et al. Complement-mediated damage to the glycocalyx plays a role in renal ischemia-reperfusion injury in mice. Transplant Direct. 2019;5:e341. https://doi.org/10.1097/txd.0000000000000881.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Annecke T, Fischer J, Hartmann H, et al. Shedding of the coronary endothelial glycocalyx: effects of hypoxia/reoxygenation vs ischaemia/reperfusion. Br J Anaesth. 2011;107:679–86. https://doi.org/10.1093/bja/aer269.

    Article  PubMed  CAS  Google Scholar 

  19. Zhu J, Li Z, Ji Z, et al. Glycocalyx is critical for blood-brain barrier integrity by suppressing caveolin1-dependent endothelial transcytosis following ischemic stroke. Brain Pathol (Zurich, Switzerland). 2022;32:e13006. https://doi.org/10.1111/bpa.13006.

    Article  CAS  Google Scholar 

  20. Gao L, Lipowsky H. Composition of the endothelial glycocalyx and its relation to its thickness and diffusion of small solutes. Microvasc Res. 2010;80:394–401. https://doi.org/10.1016/j.mvr.2010.06.005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Vogel J, Sperandio M, Pries A, et al. Influence of the endothelial glycocalyx on cerebral blood flow in mice. J Cereb Blood Flow Metab. 2000;20:1571–8. https://doi.org/10.1097/00004647-200011000-00007.

    Article  PubMed  CAS  Google Scholar 

  22. Ando Y, Okada H, Takemura G, et al. Brain-specific ultrastructure of capillary endothelial glycocalyx and its possible contribution for blood brain barrier. Sci Rep. 2018;8:17523. https://doi.org/10.1038/s41598-018-35976-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Wang G, Tiemeier G, van den Berg B, et al. Endothelial glycocalyx hyaluronan: regulation and role in prevention of diabetic complications. Am J Pathol. 2020;190:781–90. https://doi.org/10.1016/j.ajpath.2019.07.022.

    Article  PubMed  CAS  Google Scholar 

  24. Fowke T, Karunasinghe R, Bai J, et al. Hyaluronan synthesis by developing cortical neurons in vitro. Sci Rep. 2017;7:44135. https://doi.org/10.1038/srep44135.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Lorenzl S, Albers D, Narr S, et al. Expression of MMP-2, MMP-9, and MMP-1 and their endogenous counterregulators TIMP-1 and TIMP-2 in postmortem brain tissue of Parkinson’s disease. Exp Neurol. 2002;178:13–20. https://doi.org/10.1006/exnr.2002.8019.

    Article  PubMed  CAS  Google Scholar 

  26. Al Qteishat A, Gaffney J, Krupinski J, et al. Hyaluronan expression following middle cerebral artery occlusion in the rat. NeuroReport. 2006;17:1111–4. https://doi.org/10.1097/01.wnr.0000227986.69680.20.

    Article  PubMed  CAS  Google Scholar 

  27. Walker E, Rosenberg G. Divergent role for MMP-2 in myelin breakdown and oligodendrocyte death following transient global ischemia. J Neurosci Res. 2010;88:764–73. https://doi.org/10.1002/jnr.22257.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Xiang J, Andjelkovic A, Zhou N, et al. Is there a central role for the cerebral endothelium and the vasculature in the brain response to conditioning stimuli? Conditioning Med 2018;1:220–232.

  29. Ju R, Wen Y, Gou R, et al. The experimental therapy on brain ischemia by improvement of local angiogenesis with tissue engineering in the mouse. Cell Transplant. 2014:S83–95. https://doi.org/10.3727/096368914x684998.

  30. Sanchez-Rojas L, Gómez-Pinedo U, Benito-Martin M, et al. Biohybrids of scaffolding hyaluronic acid biomaterials plus adipose stem cells home local neural stem and endothelial cells: Implications for reconstruction of brain lesions after stroke. J Biomed Mater Res B Appl Biomater. 2019;107:1598–606. https://doi.org/10.1002/jbm.b.34252.

    Article  PubMed  CAS  Google Scholar 

  31. Stylli S, Kaye A, Novak U. Induction of CD44 expression in stab wounds of the brain: long term persistence of CD44 expression. J Clin Neurosci. 2000;7:137–40. https://doi.org/10.1054/jocn.1999.0187.

    Article  PubMed  CAS  Google Scholar 

  32. Struve J, Maher P, Li Y, et al. Disruption of the hyaluronan-based extracellular matrix in spinal cord promotes astrocyte proliferation. Glia. 2005;52:16–24. https://doi.org/10.1002/glia.20215.

    Article  PubMed  Google Scholar 

  33. Fraser J, Laurent T, Laurent U. Hyaluronan: its nature, distribution, functions and turnover. J Intern Med. 1997;242:27–33. https://doi.org/10.1046/j.1365-2796.1997.00170.x.

    Article  PubMed  CAS  Google Scholar 

  34. Perkins K, Arranz A, Yamaguchi Y, et al. Brain extracellular space, hyaluronan, and the prevention of epileptic seizures. Rev Neurosci. 2017;28:869–92. https://doi.org/10.1515/revneuro-2017-0017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (8207147) and the Science and Technology Project Plan of Liao Ning Province (2019JH2/10300027).

Author information

Authors and Affiliations

Authors

Contributions

H. S. C. designed the experiment and critically edited the manuscript. Y. N. Z., Q. W., and N. N. Z. performed the experiment. Y. N. Z. wrote the draft of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hui-Sheng Chen.

Ethics declarations

Ethics Approval and Consent to Participate

The study was approved by the Institutional Animal Care and Use Committee of General Hospital of Northern Theater Command (Ethics Number: 2019017).

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6.80 MB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YN., Wu, Q., Zhang, NN. et al. Ischemic Preconditioning Alleviates Cerebral Ischemia–Reperfusion Injury by Interfering With Glycocalyx. Transl. Stroke Res. 14, 929–940 (2023). https://doi.org/10.1007/s12975-022-01081-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-022-01081-w

Keywords

Navigation