Skip to main content
Log in

Effect of exercise duration on pro-oxidants and pH in exhaled breath condensate in humans

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Exercise promotes pulmonary oxidative imbalance. In this regard, some evidence has been obtained from the study of exhaled breath condensate (EBC) during urban races, in which the factors involved in the occurrence of this process are still not characterized. In this paper, under laboratory conditions, both the role of time of exercise on the generation of pro-oxidants (H2O2, NO2 ) and pH have been assessed in EBC of 16 under-trained subjects who completed three tests of cycloergometric exercise at low intensity (30 % of VO2 max) with a duration of 10, 30, and 90 min. Samples were obtained as follows: immediately before and at 80 min post exertion in each test. In the 90-min test, an increase in H2O2, NO2 concentration in EBC at 80 min post exertion with no changes in the pH was observed. Total O2 consumption and total ventilation weakly correlated with the changes in H2O2 and NO2 . In conclusion, the concentration of pro-oxidants in the EBC depends on the duration of the exercise when it is performed at low intensity under laboratory conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Araneda OF, Carbonell T, Tuesta M (2016) Update on the mechanisms of pulmonary inflammation and oxidative imbalance induced by exercise. Oxid Med Cell Longev 2016:4868536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Araneda OF, García C, Lagos N, Quiroga G, Cajigal J, Salazar MP, Behn C (2005) Lung oxidative stress as related to exercise and altitude. Lipid peroxidation evidence in exhaled breath condensate: a possible predictor of acute mountain sickness. Eur J Appl Physiol 95:383–390

    Article  CAS  PubMed  Google Scholar 

  3. Araneda OF, Guevara AJ, Contreras C, Lagos N, Berral FJ (2012) Exhaled breath condensate analysis after long distance races. Int J Sports Med 33:955–961

    Article  CAS  PubMed  Google Scholar 

  4. Araneda OF, Salazar MP (2009) Design and evaluation of a device for collecting exhaled breath condensate. J Bras Pneumol 35:69–72

    Article  Google Scholar 

  5. Araneda OF, Tuesta M (2012) Lung oxidative damage by hypoxia. Oxid Med Cell Longev 2012:856918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Araneda OF, Urbina-Stagno R, Tuesta M, Haichelis D, Alvear M, Salazar MP, García C (2014) Increase of pro-oxidants with no evidence of lipid peroxidation in exhaled breath condensate after a 10-km race in non-athletes. J Physiol Biochem 70:107–115

    Article  CAS  PubMed  Google Scholar 

  7. Bikov A, Galffy G, Tamasi L, Bartusek D, Antus B, Losonczy G, Horvath I (2014) Exhaled breath condensate pH decreases during exercise-induced bronchoconstriction. Respirology 19:563–569

    Article  PubMed  Google Scholar 

  8. Bikov A, Lazar Z, Schandl K, Antus BM, Losonczy G, Horvath I (2011) Exercise changes volatiles in exhaled breath assessed by an electronic nose. Acta Physiol Hung 98:321–8

    Article  CAS  PubMed  Google Scholar 

  9. Burnham KJ, Arai TJ, Dubowitz DJ, Henderson AC, Holverda S, Buxton RB, Prisk GK, Hopkins SR (2009) Pulmonary perfusion heterogeneity is increased by sustained, heavy exercise in humans. J Appl Physiol 107:1559–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carlisle AJ, Sharp NC (2001) Exercise and outdoor ambient air pollution. Br J Sports Med 35:214–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Freed AN, Davis MS (1999) Hyperventilation with dry air increases airway surface fluid osmolality in canine peripheral airways. Am J Respir Crit Care Med 159:1101–1107

    Article  CAS  PubMed  Google Scholar 

  12. Gay CA, Gebicki JM (2002) Perchloric acid enhances sensitivity and reproducibility of the ferric-xylenol orange peroxide assay. Anal Biochem 304:42–46

    Article  CAS  PubMed  Google Scholar 

  13. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 126:131–138

    Article  CAS  PubMed  Google Scholar 

  14. Greenwald R, Ferdinands JM, Teague WG (2009) Ionic determinants of exhaled breath condensate pH before and after exercise in adolescent athletes. Pediatr Pulmonol 44:768–77

    Article  PubMed  Google Scholar 

  15. Heinicke I, Boehler A, Rechsteiner T, Bogdanova A, Jelkmann W, Hofer M, Rawlings P, Araneda OF, Behn C, Gassmann M, Heinicke K (2009) Moderate altitude but not additional endurance training increases markers of oxidative stress in exhaled breath condensate. Eur J Appl Physiol 106:599–604

    Article  CAS  PubMed  Google Scholar 

  16. Kostikas K, Papatheodorou G, Psathakis K, Panagou P, Loukides S (2003) Oxidative stress in expired breath condensate of patients with COPD. Chest 124:1373–1380

    Article  CAS  PubMed  Google Scholar 

  17. Marek E, Mückenhoff K, Streckert HJ, Becher G, Marek W (2008) Measurements of L-lactate and H2O2 in exhaled breath condensate at rest and mild to moderate exercise in young and healthy subjects. Pneumologie 62:541–547

    Article  CAS  PubMed  Google Scholar 

  18. Maroun MJ, Mehta S, Turcotte R, Cosio MG, Hussain SN (1995) Effects of physical conditioning on endogenous nitric oxide output during exercise. J Appl Physiol 79:1219–1225

    CAS  PubMed  Google Scholar 

  19. McFadden ER, Pichurko BM (1985) Intraairway thermal profiles during exercise and hyperventilation in normal man. J Clin Invest 76:1007–1010

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mercken EM, Gosker HR, Rutten EP, Wouters EF, Bast A, Hageman GJ, Schols AM (2009) Systemic and pulmonary oxidative stress after single-leg exercise in COPD. Chest 136:1291–1300

    Article  CAS  PubMed  Google Scholar 

  21. Nourooz-Zadeh J, Tajaddini-Sarmadi J, Wolff SP (1994) Measurement of plasma hydroperoxide concentrations by the ferrous oxidation-xylenol orange assay in conjunction with triphenylphosphine. Anal Biochem 220:403–409

    Article  CAS  PubMed  Google Scholar 

  22. Nowak D, Kalucka S, Bialasiewicz P, Król M (2001) Exhalation of H2O2 and thiobarbituric acid reactive substances (TBARs) by healthy subjects. Free Radic Biol Med 30:178–186

    Article  CAS  PubMed  Google Scholar 

  23. Orhan H, van Holland B, Krab B, Moeken J, Vermeulen NPE, Hollander P, Meerman JHN (2004) Evaluation of a multi-parameter biomarker set for oxidative damage in man: increased urinary excretion of lipid, protein and DNA oxidation products after one hour of exercise. Free Radic Res 38:1269–1279

    Article  CAS  PubMed  Google Scholar 

  24. Paget-Brown A, Ngamtrakulpanit L, Smith A, Bunyan D, Hom S, Nguyen A, Hunt J (2006) Normative data for pH of exhaled breath condensate. Chest 129:426–430

    Article  PubMed  Google Scholar 

  25. Petersen AMW, Pedersen BK (2005) The anti-inflammatory effect of exercise. J Appl Physiol 98:1154–1162

    Article  CAS  PubMed  Google Scholar 

  26. Powers SK, Ji LL, Kavazis AN, Jackson MJ (2011) Reactive oxygen species: impact on skeletal muscle. Compr Physiol 1:941–969

    PubMed  PubMed Central  Google Scholar 

  27. Radák Z, Nakamura A, Nakamoto H, Asano K, Ohno H, Goto S (1998) A period of anaerobic exercise increases the accumulation of reactive carbonyl derivatives in the lungs of rats. Pflugers Arch Eur J Physiol 435:439–441

    Article  Google Scholar 

  28. Ratnawati MJ, Henry RL, Thomas PS (2006) Exhaled breath condensate nitrite/nitrate and pH in relation to pediatric asthma control and exhaled nitric oxide. Pediatr Pulmonol 41:929–936

    Article  CAS  PubMed  Google Scholar 

  29. Reid MB, Haack KE, Franchek KM, Valberg PA, Kobzik L, West MS (1992) Reactive oxygen in skeletal muscle. I. Intracellular oxidant kinetics and fatigue in vitro. J Appl Physiol 73:1797–1804

    CAS  PubMed  Google Scholar 

  30. Riediker M, Danuser B (2007) Exhaled breath condensate pH is increased after moderate exercise. J Aerosol Med 20:13–18

    Article  PubMed  Google Scholar 

  31. Sheppard D, Eschenbacher WL (1984) Respiratory water loss as a stimulus to exercise-induced bronchoconstriction. J Allergy Clin Immunol 73:640–642

    Article  CAS  PubMed  Google Scholar 

  32. Szkudlarek U, Maria L, Kasielski M, Kaucka S, Nowak D (2003) Exhaled hydrogen peroxide correlates with the release of reactive oxygen species by blood phagocytes in healthy subjects. Respir Med 97:718–725

    Article  CAS  PubMed  Google Scholar 

  33. van Beurden WJC, Harff GA, Dekhuijzen PNR, van den Bosch MJA, Creemers JPHM, Smeenk FWJM (2002) An efficient and reproducible method for measuring hydrogen peroxide in exhaled breath condensate. Respir Med 96:197–203

    Article  PubMed  Google Scholar 

  34. Vaughan J, Ngamtrakulpanit L, Pajewski TN, Turner R, Nguyen TA, Smith A, Urban P, Hom S, Gaston B, Hunt J (2003) Exhaled breath condensate pH is a robust and reproducible assay of airway acidity. Eur Respir J 22:889–94

    Article  CAS  PubMed  Google Scholar 

  35. Zietkowski Z, Skiepko R, Tomasiak-Lozowska MM, Mroczko B, Szmitkowski M, Bodzenta-Lukaszyk A (2010) Changes in high-sensitivity C-reactive protein in serum and exhaled breath condensate after intensive exercise in patients with allergic asthma. Int Arch Allergy Immunol 153:75–85

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge Mr. Luis Pizarro Zúñiga, Miss. Paulina Silva, and Mr. Gustavo Gómez for their technical assistance. This study was funded by Fondo de Ayuda a la Investigación (FAI), Universidad de los Andes, Project INOGTO2013 and the National Fund for Scientific & Technological Development (FONDECYT), Project number 11130082 granted to O.F. Araneda.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. F. Araneda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuesta, M., Alvear, M., Carbonell, T. et al. Effect of exercise duration on pro-oxidants and pH in exhaled breath condensate in humans. J Physiol Biochem 72, 353–360 (2016). https://doi.org/10.1007/s13105-016-0486-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-016-0486-4

Keywords

Navigation