Skip to main content

Advertisement

Log in

Who am I — and if so, how many? Species diversity of calcareous dinophytes (Thoracosphaeraceae, Peridiniales) in the Mediterranean Sea

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

The diversity of extant calcareous dinophytes (Thoracosphaeraceae, Dinophyceae) is not fully recorded at present. The establishment of algal strains collected at multiple localities is necessary for a rigorous study of taxonomy, morphology and evolution in these unicellular organisms. We collected sediment and water tow samples from more than 60 localities in coastal areas of the eastern Mediterranean Sea and documented 15 morphospecies of calcareous dinophytes. Internal transcribed spacer (ITS) barcoding identified numerous species of the Scrippsiella trochoidea species complex that were genetically distinct, but indistinguishable in gross morphology (i.e. with the same tabulation patterns of the motile theca and similar spiny coccoid stages). We assessed a possible minimal number of cryptic species using ITS ribotype networks that indicated the existence of at least 21 species within the Scrippsiella trochoidea species complex. Species diversity of calcareous dinophytes appears higher in the Mediterranean Sea than in other parts of the world’s oceans such as the North Sea. Our data underline the importance of field work to record the diversity of calcareous dinophytes and other unicellular life forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Attaran-Fariman, G., & Bolch, C. J. S. (2007). Scrippsiella irregularis sp. nov. (Dinophyceae), a new dinoflagellate from the southeast coast of Iran. Phycologia, 46, 572–582.

    Article  Google Scholar 

  • Beaugrand, G., Edwards, M., & Legendre, L. (2010). Marine biodiversity, ecosystem functioning, and carbon cycles. Proceedings of the National Academy of Sciences, 107, 10120–10124.

    Article  CAS  Google Scholar 

  • CBOL Plant Working Group. (2009). A DNA barcode for land plants. Proceedings of the National Academy of Sciences, 106(31), 12794–12797.

    Article  Google Scholar 

  • Clement, M. J., Posada, D., & Crandall, K. A. (2000). TCS: A computer program to estimate gene genealogies. Molecular Ecology, 9, 1657–1659.

    Article  PubMed  CAS  Google Scholar 

  • D’Onofrio, G., Marino, D., Bianco, L., Busico, E., & Montresor, M. (1999). Toward an assessment on the taxonomy of dinoflagellates that produce calcareous cysts (Calciodinelloideae, Dinophyceae): A morphological and molecular approach. Journal of Phycology, 35, 1063–1078.

    Article  Google Scholar 

  • Daniels, S. R., & Ruhberg, H. (2010). Molecular and morphological variation in a South African velvet worm Peripatopsis moseleyi (Onychophora, Peripatopsidae): Evidence for cryptic speciation. Journal of Zoology, 282, 171–179.

    Article  Google Scholar 

  • Deflandre, G. (1947). Calciodinellum nov. gen., premier répresentant d´une famille nouvelle de Dinoflagellés fossiles à theque calcaire. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, 224, 1781–1782.

    Google Scholar 

  • Deflandre, G. (1949). Les Calciodinellidés. Dinoflagellatés fossiles à thèque calcaire. Le Botaniste, 34, 191–219.

    Google Scholar 

  • Elbrächter, M., Gottschling, M., Hildebrand-Habel, T., Keupp, H., Kohring, R., Lewis, J., et al. (2008). Establishing an agenda for calcareous dinoflagellate research (Thoracosphaeraceae, Dinophyceae) including a nomenclatural synopsis of generic names. Taxon, 57, 1289–1303.

    Google Scholar 

  • Esper, O., Versteegh, G. J. M., Zonneveld, K. A. F., & Willems, H. (2004). A palynological reconstruction of the Agulhas Retroflection (South Atlantic Ocean) during the Late Quaternary. Global and Planetary Change, 41, 31–62.

    Article  Google Scholar 

  • Feau, N., Vialle, A., Allaire, M., Tanguay, P., Joly, D. L., Frey, P., et al. (2009). Fungal pathogen (mis-)identifications: A case study with DNA barcodes on Melampsora rusts of aspen and white poplar. Mycological Research, 113, 713–724.

    Article  PubMed  CAS  Google Scholar 

  • Fensome, R. A., & Williams, G. L. (2004). The Lentin and Williams index of fossil dinoflagellates. College Park: American Association of Stratigraphic Palynologists.

    Google Scholar 

  • Fensome, R. A., Taylor, F. J. R., Norris, G., Sarjeant, W. A. S., Wharton, D. I., & Williams, G. L. (1993). A classification of living and fossil dinoflagellates. Micropaleontology Special Publication Number, 7, 1–245.

    Google Scholar 

  • Fensome, R. A., Saldarriaga, J. F., & Taylor, F. J. R. (1999). Dinoflagellate phylogeny revisited: Reconciling morphological and molecular based phylogenies. Grana, 38, 66–80.

    Google Scholar 

  • Genovesi, B., Shin-Grzerbyk, M., Grzerbyk, D., Laabir, M., Gagnaire, P., Vaquer, A., et al. (2011). Assessment of cryptic species diversity within blooms and cyst bank of the Alexandrium tamarense complex (Dinophyceae) in a Mediterranean lagoon facilitated by semi-multiplex PCR. Journal of Plankton Research, 33, 405–414.

    Article  CAS  Google Scholar 

  • Godhe, A., Norén, F., Kuylenstierna, M., Ekberg, C., & Karlson, B. (2001). Relationshsips between planktonic dinoflagellate abundance, cysts recovered in sediment traps and environmental factors in the Gullmar Fjord, Sweden. Journal of Plankton Research, 23, 923–938.

    Article  Google Scholar 

  • Gómez, F. (2003). Checklist of Mediterranean free-living dinoflagellates. Botanica Marina, 46, 215–242.

    Article  Google Scholar 

  • Gottschling, M., & Kirsch, M. (2009). Annotated list of Scandinavian calcareous dinoflagellates collected in fall 2003. Berliner Paläobiologische Abhandlungen, 10, 193–198.

    Google Scholar 

  • Gottschling, M., Keupp, H., Plötner, J., Knop, R., Willems, H., & Kirsch, M. (2005a). Phylogeny of calcareous dinoflagellates as inferred from ITS and ribosomal sequence data. Molecular Phylogenetics and Evolution, 36, 444–455.

    Article  PubMed  CAS  Google Scholar 

  • Gottschling, M., Knop, R., Plötner, J., Kirsch, M., Willems, H., & Keupp, H. (2005b). A molecular phylogeny of Scrippsiella sensu lato (Calciodinellaceae, Dinophyta) with interpretations on morphology and distribution. European Journal of Phycology, 40, 207–220.

    Article  CAS  Google Scholar 

  • Gottschling, M., Soehner, S., Zinssmeister, C., John, U., Plötner, J., Schweikert, M., et al. (2012). Delimitation of the Thoracosphaeaceae (Dinophyceae), including the calcareous dinoflagellates, based on large amounts of ribosomal RNA sequence data. Protist, 163, 15–24.

    Article  PubMed  Google Scholar 

  • Gu, H.-F., Sun, J., Kooistra, W. H. C. F., & Zeng, R. (2008). Phylogenetic position and morphology of thecae and cysts of Scrippsiella (Dinophyceae) species in the East China Sea. Journal of Phycology, 44, 478–494.

    Article  CAS  Google Scholar 

  • Harper, J. T., Waanders, E., & Keeling, P. J. (2005). On the monophyly of chromalveolates using a six-protein phylogeny of eukaryotes. International Journal of Systematic and Evolutionary Microbiology, 55, 487–496.

    Article  PubMed  CAS  Google Scholar 

  • Hebert, P. D. N., Cywinska, A., Ball, S. L., & deWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Science, 270, 313–321.

    Article  CAS  Google Scholar 

  • Hebert, P. D. N., Stoekle, M. Y., & Zemlak, C. M. F. (2004). Identification of birds through DNA barcodes. PLoS Biology, 2(10), e312.

    Article  PubMed  Google Scholar 

  • Horton, T. R., & Bruns, T. D. (2001). The molecular revolution in ectomycorrhizal ecology: Peeking into the black-box. Molecular Ecology, 10, 1855–1871.

    Article  PubMed  CAS  Google Scholar 

  • Janofske, D. (1992). Kalkiges Nannoplankton, insbesondere Kalkige Dinoflagellaten-Zysten der alpinen Ober-Trias: Taxonomie, Biostratigraphie und Bedeutung für die Phylogenie der Peridiniales. Berliner Geowissenschaftliche Abhandlungen (E), 4, 1–53.

    Google Scholar 

  • Janofske, D. (2000). Scrippsiella trochoidea and Scrippsiella regalis, nov. comb. (Peridiniales, Dinophyceae): A comparison. Journal of Phycology, 36, 178–189.

    Article  Google Scholar 

  • Karwath, B. (2000). Ecological studies on living and fossil calcareous dinoflagellate of the equatorial and tropical Atlantic Ocean. Berichte, Fachbereich Geowissenschaften, Universität Bremen, 152, 1–175.

    Google Scholar 

  • Keller, M. D., Selvin, R. C., Claus, W., & Guillard, R. R. L. (1987). Media for the culture of oceanic ultraphytoplankton. Journal of Phycology, 23, 633–638.

    Article  Google Scholar 

  • Kress, W. J., Wurdack, K. J., Zimmer, E., Weight, L. A., & Janzen, D. H. (2005). Use of DNA barcodes to identify flowering plants. Proceedings of the National Academy of Sciences, 102, 8369–8374.

    Article  CAS  Google Scholar 

  • Leander, B. S., & Keeling, P. J. (2004). Early evolutionary history of dinoflagellates and apicomplexans (Alveolata) as inferred from hsp90 and actin phylogenies. Journal of Phycology, 40, 341–350.

    Article  CAS  Google Scholar 

  • Lewis, J. (1991). Cyst-theca relationships in Scrippsiella (Dinophyceae) and related orthoperidinoid genera. Botanica Marina, 34, 91–106.

    Google Scholar 

  • Lilly, E. L., Halanych, K. M., & Anderson, D. M. (2007). Species boundaries and global biogeography of the Alexandrium tamarense complex (Dinophyceae). Journal of Phycology, 43, 1329–1338.

    Article  CAS  Google Scholar 

  • Lin, S., Zhang, H., Hou, Y., Zhuang, Y., & Miranda, L. (2009). High-level diversity of dinoflagellates in the natural environment, revealed by assessment of mitochondrial cox1 and cob genes for dinoflagellate DNA barcoding. Applied and Environmental Microbiology, 75(12), 1279–1290.

    Article  PubMed  CAS  Google Scholar 

  • Litaker, R. W., Vandersea, M. W., Kibler, S. R., Reece, K. S., Stokes, N. A., Lutzoni, F. M., et al. (2007). Recognizing dinoflagellate species using ITS rDNA sequences. Journal of Phycology, 43, 344–355.

    Article  CAS  Google Scholar 

  • Lo, E. Y. Y., Stefanovic, S., & Dickinson, T. A. (2010). Reconstructing reticulation history in a phylogenetic framework and the potential of allopatric speciation driven by polyploidy in an agamic complex in Crataegus (Rosaceae). Evolution, 64, 3593–3608.

    Article  PubMed  Google Scholar 

  • Loeblich, A. R. III (1976). Dinoflagellate evolution: Speculation and evidence. Journal of Protozoology, 23(1), 13–28.

    PubMed  Google Scholar 

  • Meier, K. J. S., & Willems, H. (2003). Calcareous dinoflagellate cysts in surface sediments from the Mediterranean Sea: Distribution patterns and influence of main environmental gradients. Marine Micropaleontology, 48, 321–354.

    Article  Google Scholar 

  • Meier, K. J. S., Janofske, D., & Willems, H. (2002). New calcareous dinoflagellates (Calciodinelloideae) from the Mediterranean Sea. Journal of Phycology, 38, 602–615.

    Google Scholar 

  • Meier, K. J. S., Höll, C., & Willems, H. (2004). Effect of temperature on culture growth and cyst production in the calcareous dinoflagellates Calciodinellum albatrosianum, Leonella granifera and Pernambugia tuberosa. Micropaleontology, 50, 93–106.

    Article  Google Scholar 

  • Meier, K. J. S., Young, J. R., Kirsch, M., & Feist-Burkhardt, S. (2007). Evolution of different life-cycle strategies in oceanic calcareous dinoflagellates. European Journal of Phycology, 42, 81–89.

    Article  Google Scholar 

  • Montresor, M. (1995). Scrippsiella ramonii sp. nov. (Peridiniales, Dinophyceae), a marine dinoflagellate producing a calcareous resting cyst. Phycologia, 34(1), 87–91.

    Article  Google Scholar 

  • Montresor, M., & Zingone, A. (1988). Scrippsiella precaria spec. nov. (Dinophyceae), a marine dinoflagellate from the Gulf of Naples. Phycologia, 27, 387–394.

    Article  Google Scholar 

  • Montresor, M., Zingone, A., & Marino, D. (1993). The calcareous resting cyst of Pentapharsodinium tyrrhenicum comb. nov. (Dinophyceae). Journal of Phycology, 29, 223–230.

    Article  Google Scholar 

  • Montresor, M., Montesarchio, E., Marino, D., & Zingone, A. (1994). Calcareous dinoflagellate cysts in marine sediments of the Gulf of Naples (Mediterranean Sea). Review of Palaeobotany and Palynology, 84, 45–56.

    Article  Google Scholar 

  • Montresor, M., Janofske, D., & Willems, H. (1997). The cyst-theca relationship in Calciodinellum operosum emend. (Peridiniales, Dinophyceae) and a new approach for the study of calcareous cysts. Journal of Phycology, 33, 122–131.

    Article  Google Scholar 

  • Montresor, M., Zingone, A., & Sarno, D. (1998). Dinoflagellate cyst production at a coastal Mediterranean site. Journal of Plankton Research, 20, 2291–2312.

    Article  Google Scholar 

  • Montresor, M., Sgrosso, S., Procaccini, G., & Kooistra, W. H. C. F. (2003). Intraspecific diversity in Scrippsiella trochoidea (Dinophyceae): Evidence for cryptic species. Phycologia, 42, 56–70.

    Article  Google Scholar 

  • Peng, Y. Y., Baum, B. R., Ren, C. Z., Jiang, Q. T., Chen, G. Y., Zheng, Y. L., et al. (2010). The evolution pattern of rDNA ITS in Avena and phylogenetic relationship of the Avena species (Poaceae: Aveneae). Hereditas, 147, 183–204.

    Article  PubMed  Google Scholar 

  • Penna, A., Battocchi, C., Garcés, E., Anglès, S., Cucchiari, E., Totti, C., et al. (2010). Detection of microalgal resting cysts in European coastal sediments using a PCR-based assay. Deep Sea Research Part II: Topical Studies in Oceanography, 57, 288–300.

    Article  CAS  Google Scholar 

  • Persson, A., Godhe, A., & Karlson, B. (2000). Dinoflagellate cysts in recent sediments from the west coast of Sweden. Botanica Marina, 43, 69–79.

    Article  Google Scholar 

  • Posada, D., & Crandall, K. A. (2001). Intraspecific gene genealogies: Trees grafting into networks. Trends in Ecology & Evolution, 16, 37–45.

    Article  Google Scholar 

  • Rizzo, P. J. (2003). Those amazing dinoflagellate chromosomes. Cell Research, 13, 215–217.

    Article  PubMed  CAS  Google Scholar 

  • Satta, C. T., Anglès, S., Garcés, E., Lugliè, A., Padedda, B. M., & Sechi, N. (2010). Dinoflagellate cysts in recent sediments from two semi-enclosed areas of the Western Mediterranean Sea subject to high human impact. Deep Sea Research Part II: Topical Studies in Oceanography, 57, 256–267.

    Article  Google Scholar 

  • Stein, F. (1883). Die Naturgeschichte der arthrodelen Flagellaten. Der Organismus der Infusionstiere. III. Pt. 2., 1–30.

  • Stern, R. F., Horak, A., Andrew, R. L., Coffroth, M.-A., Andersen, R. A., Küpper, F. C., et al. (2010). Environmental barcoding reveals massive dinoflagellate diversity in marine environments. PLoS One, 5(11), e13991.

    Article  PubMed  Google Scholar 

  • Stern, R. F., Andersen, R. A., Jameson, I., Küpper, F. C., Coffroth, M.-A., Vaulot, D., et al. (2012). Evaluating the ribosomal internal transcribed spacer (ITS) as candidate dinoflagellate barcode marker. PLoS One, 7(8), e42780.

    Article  PubMed  CAS  Google Scholar 

  • Streng, M., Hildebrand-Habel, T., & Willems, H. (2004). A proposed classification of archeopyle types in calcareous dinoflagellate cysts. Journal of Paleontology, 78, 456–483.

    Article  Google Scholar 

  • Tautz, D., Arctander, P., Minelli, A., Thomas, R. H., & Vogler, A. P. (2003). A plea for DNA taxonomy. Trends in Ecology & Evolution, 18(2), 70–74.

    Article  Google Scholar 

  • Taylor, F. J. R. (1980). On dinoflagellate evolution. Biosystems, 13, 65–108.

    Article  PubMed  CAS  Google Scholar 

  • Tittensor, D. P., Mora, C., Jetz, W., Lotze, H. K., Ricard, D., Vanden Berghe, E., et al. (2010). Global patterns and predictors of marine biodiversity across taxa. Nature, 466, 1098–1101.

    Article  PubMed  CAS  Google Scholar 

  • Tommasa, L. D., Danovaro, R., Belmonte, G., & Boero, F. (2004). Resting stage abundance in the biogenic fraction of surface sediments from the deep Meditarranean Sea. Scientia Marina, 68, 103–111.

    Google Scholar 

  • Versteegh, G. (1993). New Pliocene and Pleistocene calcareous dinoflagellate cysts from southern Italy and Crete. Review of Palaeobotany and Palynology, 78, 353–380.

    Article  Google Scholar 

  • Vink, A. (2004). Calcareous dinoflagellate cysts in South and equatorial Atlantic surface sediments: diversity, distribution, ecology and potential for palaeoenvironmental reconstruction. Marine Micropaleontology, 50, 43–88.

    Article  Google Scholar 

  • Wall, D., & Dale, B. (1966). "Living fossils" in Western Atlantic plankton. Nature, 211, 1025–1026.

    Article  Google Scholar 

  • Wall, D., & Dale, B. (1968). Quaternary calcareous dinoflagellates (Calciodinellideae) and their natural affinities. Journal of Paleontology, 42, 1395–1408.

    Google Scholar 

  • Ward, R. D., Zemlak, T. S., Innes, B. H., Last, P. R., & Hebert, P. D. (2005). DNA barcoding Australia’s fish species. Philosophical Transactions of the Royal Society B: Biological Science, 360, 1847–1857.

    Article  CAS  Google Scholar 

  • White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: A guide to methods and amplifications (pp. 315–322). New York: Academic.

    Google Scholar 

  • Williams, M. J., Ausubel, J., Poiner, I., Garcia, S. M., Baker, D. J., Clark, M. R., et al. (2010). Making marine life count: a new baseline for policy. PLoS Biology, 8(11), e1000531

  • Zinssmeister, C., Soehner, S., Facher, E., Kirsch, M., Meier, K. J. S., & Gottschling, M. (2011). Catch me if you can: The taxonomic identity of Scrippsiella trochoidea (F.Stein) A.R.Loebl. (Thoracosphaeraceae, Dinophyceae). Systematics and Biodiversity, 9, 145–157.

    Article  Google Scholar 

  • Zinssmeister, C., Soehner, S., Kirsch, M., Facher, E., Meier, K. J. S., Keupp, H. & Gottschling, M. (in press). Same but different: Two novel bicarinate species of extant calcareous dinophytes (Thoracosphaeraceae, Peridiniales) from the Mediterranean Sea. Journal of Phycology, 47. doi:10.1111/j.1529-8817.2012.01182.x

  • Zonneveld, K. A. F., Höll, C., Janofske, D., Karwath, B., Kerntopf, B., Rühlemann, C., et al. (1999). Calcareous dinoflagellate cysts as paleo-environmental tools. In G. Fischer & G. Wefer (Eds.), Use of proxies in paleoceanography: Examples from the South Atlantic (pp. 145–164). Berlin: Springer.

    Chapter  Google Scholar 

  • Zonneveld, K. A. F., Meier, K. J. S., Esper, O., Siggelkow, D., Wendler, I., & Willems, H. (2005). The (palaeo-)environmental significance of modern calcareous dinoflagellate cysts: A review. Paläontologische Zeitschrift, 79, 61–77.

    Google Scholar 

Download references

Acknowledgements

We thank Julia Daum, Patricia Silva Flores and Martina Rom-Roeske for their assistance during cultivation of the strains. Mona Hoppenrath (Bremerhaven) and Michael Schweikert (Stuttgart) gave valuable advices in methodologies. We thank two anonymous reviewers for constructive and motivating reviews of our manuscript. Financial support was provided by the Deutsche Forschungsgemeinschaft (grants KE 322/36, RI 1738/5, and WI 725/25), and the Münchener Universitätsgesellschaft, which is grateful acknowledged here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia Soehner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 142 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soehner, S., Zinssmeister, C., Kirsch, M. et al. Who am I — and if so, how many? Species diversity of calcareous dinophytes (Thoracosphaeraceae, Peridiniales) in the Mediterranean Sea. Org Divers Evol 12, 339–348 (2012). https://doi.org/10.1007/s13127-012-0109-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-012-0109-z

Keywords

Navigation