Skip to main content
Log in

Analysis of Saccharina japonica transcriptome using the high-throughput DNA sequencing technique and its vanadium-dependent haloperoxidase gene

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

Saccharina is one of the most important cold-water living marine brown algal genera. In this study we analyzed the transcriptome of S. japonica, which belongs to the 1 000 Plants (OneKP) Project, by using a next-generation high-throughput DNA sequencing technique. About 5.16 GB of raw data were generated, and 65 536 scaffolds with an average length of 454 bp were assembled with SOAP de novo assembly method. In total, 19 040 unigenes were identified by BLAST; 25 734 scaffolds were clustered into 37 Gene ontology functional groups; 6 760 scaffolds were classified into 25 COG categories, as well as 2 665 scaffolds that were assigned to 306 KEGG pathways. Majority of the unigenes exhibited more similarities to algae including brown algae and diatom than other cyanobacteria, marine diatom, and plant. Saccharina japonica has the outstanding capability to accumulate halogen such as Br and I via halogenation processes from seawater. We acquired 42 different vanadium-dependent haloperoxidases (vHPO) in S. japonica transcriptome data, including 5 segments of vanadium-dependent iodoperoxidase (vIPO) and 37 segments of vanadium-dependent bromoperoxidase (vBPO). Complicated analyses of identified fulllength S. japonica vBPO1 and S. japonica vBPO2 revealed the importance of vBPO among species of brown algae and the strong relationship between marine algal vBPOs and vIPOs. This study will enhance our understanding of the biological characteristics and economic values of S. japonica species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almeida M, Humanes M, Melo R, et al. 1998. Sacchoriza polyschides (phaeophyceae; phyllariaceae): a new source for vanadium-dependent haloperoxidases. Phytochemistry, 48(2): 229–239

    Article  Google Scholar 

  • Almeida M G, Humanes M, Melo R, et al. 2000. Purification and characterization of vanadium haloperoxidases from the brown alga Pelvetia canaliculata. Phytochemistry, 54(1): 5–11

    Article  Google Scholar 

  • Altermann E, Klaenhammer T R. 2005. PathwayVoyager: pathway mapping using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. BMC Genomics, 6: 60

    Article  Google Scholar 

  • Baden D G, Corbett M D. 1980. Bromoperoxidases from Penicillus capitatus, Penicillus lamourouxii and Rhipocephalus phoenix. Biochem. J 187(1): 205–211

    Google Scholar 

  • Bernroitner M, Zamocky M, Furtmüller P G, et al. 2009. Occurrence, phylogeny, structure, and function of catalases and peroxidases in cyanobacteria. J Exp Bot, 60(2): 423–440

    Article  Google Scholar 

  • Blobel G, Dobberstein B. 1975. Transfer of proteins across membranes: I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J Cell Bio, 67(3): 835–851

    Article  Google Scholar 

  • Bold H C, Wynne M J. 1985. Introduction to the Algae: Structure and Reproduction. Engelwood Cliffs: Prentice Hall Inc

    Google Scholar 

  • Butler A, Carter-Franklin J N. 2004. The role of vanadium bromoperoxidase in the biosynthesis of halogenated marine natural products. Nat Prod Rep, 21(1): 180–188

    Article  Google Scholar 

  • Butler A, Walker J V. 1993. Marine Haloperoxidases. Chem Rev, 93: 1937–1994

    Article  Google Scholar 

  • Colin C, Leblanc C, Wagner E, et al. 2003. The brown algal kelp Laminaria digitata features distinct bromoperoxidase and iodoperoxidase activities. J Biol Chem, 278(26): 23545–23552

    Article  Google Scholar 

  • Conesa A, Gotz S. 2008. Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics, 2008: 619832

    Article  Google Scholar 

  • Dembitsky V M. 2003. Oxidation, epoxidation and sulfoxidation reactions catalysed by haloperoxidases. Tetrahedron, 59(26): 4701–4720

    Article  Google Scholar 

  • Deng Yunyan, Yao Jianting, Wang Xiuliang, et al. 2012. Transcriptome sequencing and comparative analysis of Saccharina japonica (Laminariales, Phaeophyceae) under blue light induction. PLoS One, 7(6): e39704

    Article  Google Scholar 

  • Ghangal R, Raghuvanshi S, Sharma P C. 2009. Isolation of good quality RNA from a medicinal plant seabuckthorn rich in secondary metabolites. Plant Physiol Biochem, 47(11–12): 1113–1115

    Article  Google Scholar 

  • Graham L E, Wilcox L W. 2000. Algae. Prentice Hall, NJ: Upper Saddle River

    Google Scholar 

  • Gray M W. 2012. Mitochondrial evolution. Cold Spring Harb Perspect Biol, 4(9): a011403

    Article  Google Scholar 

  • Hemrika W, Renirie R, Dekker H L, et al. 1997. From phosphatases to vanadium peroxidases: a similar architecture of the active site. Proc Natl Acad Sci USA, 94(6): 2145–2149

    Article  Google Scholar 

  • Kanehisa M, Goto S, Kawashima S, et al. 2004. The KEGG resource for deciphering the genome. Nucleic Acids Res, 32(Database issue): D277–280

    Article  Google Scholar 

  • Kawai H, Sasaki H. 2000. Molecular phylogeny of the brown algal genera Akkesiphycus and AkkesiphycusHalosiphon (Laminariales), resulting in the circumscription of the new families Akkesiphycaceae and Halosiphonaceae. Phycologia, 39(5): 416–428

    Article  Google Scholar 

  • Li Ruiqiang, Li Yingrui, Kristiansen K, et al. 2008. SOAP: short oligonucleotide alignment program. Bioinformatics, 24(5): 713–714

    Article  Google Scholar 

  • Li Tianyong, Ren Lei. 2012. A suitable method for extracting total RNA from red algae. Transactions of Oceanology and Limnology (in Chinese), 4: 64–71

    Google Scholar 

  • Li Chaozheng, Weng Shaoping, Chen Yonggui, et al. 2012. Analysis of Litopenaeus vannamei transcriptome using the next-generation DNA sequencing technique. PLoS One, 7(10): e47442

    Article  Google Scholar 

  • Littlechild J, Garcia-Rodriguez E, Dalby A, et al. 2002. Structural and functional comparisons between vanadium haloperoxidase and acid phosphatase enzymes. J Mol Recognit, 15(5): 291–296

    Article  Google Scholar 

  • Moriya Y, Itoh M, Okuda S, et al. 2007. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Research, 35(Web Server Issue): W182–185

    Article  Google Scholar 

  • Neuwald A F. 1997. An unexpected structural relationship between integral membrane phosphatases and soluble haloperoxidases. Protein Sci, 6(8): 1764–1767

    Article  Google Scholar 

  • Ogata H, Goto S, Sato K, et al. 1999. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 27(1): 29–34

    Article  Google Scholar 

  • Page R D. 1996. TREEVIEW: An application to display phylogenetic trees on personal computers. Comput Appl Biosci, 12(4): 357–358

    Google Scholar 

  • Ronquist F, Huelsenbeck J P. 2003. Mrbayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19(12): 1572–1574

    Article  Google Scholar 

  • Saenko G N, Kravtsova Y Y, Ivaneneko V V, et al. 1978. Concentration of iodine and bromine by plants in the Seas of Japan and Okhotsk. Marine Biology, 47: 243–250

    Article  Google Scholar 

  • Shimonishi M, Kuwamoto S, Inoue H, et al. 1998. Cloning and expression of the gene for a vanadium-dependent bromoperoxidase from a marine macro-alga, Corallina pilulifera. FEBS Letters, 428(1–2): 105–110

    Article  Google Scholar 

  • Sonnhammer E L, von Heijne G, Krogh A. 1998. A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol, 6: 175–182

    Google Scholar 

  • Tatusov R L, Fedorova N D, Jackson J D, et al. 2003. The COG database: an updated version includes eukaryotes. BMC Bioinformatics, 4: 41

    Article  Google Scholar 

  • Petersen T N, Brunak S, von Heijne G, et al. 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods, 8(10): 785–786

    Article  Google Scholar 

  • Thompson J D, Gibson T J, Plewniak F, et al. 1997. The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 25(24): 4876–4882

    Article  Google Scholar 

  • Tseng C K. 2001. Algal biotechnology industries and research activities in China. Journal of Applied Phycology, 13: 375–380

    Google Scholar 

  • Van den Hoek C, Mann D G, Jahns H M. 1995. Algae: An Introduction to Phycology. Cambridge: Cambridge University Press

    Google Scholar 

  • Vilter H. 1984. Peroxidases from Phaeophyceae: a vanadium(V)-dependent peroxidase from Ascophyllum nodosum. Phytochemistry, 23(7): 1387–1390

    Article  Google Scholar 

  • Vilter H. 1995. Vanadium-dependent haloperoxidases. Met Ions Biol Syst, 31: 325–362

    Google Scholar 

  • Wang Wenjun, Wang Feijiu, Sun Xiutao, et al. 2013. Comparison of transcriptome under red and blue light culture of Saccharina japonica (Phaeophyceae). Planta J, 237(4): 1123–1133

    Article  Google Scholar 

  • Wever R, Tromp M G M, Krenn B E, et al. 1991. Brominating activity of the seaweed Ascophyllum nodosum: impact on the biosphere. Environ Sci Technol, 25(3): 446–449

    Article  Google Scholar 

  • Weyand M, Hecht H, Kiess M, et al. 1999. X-ray structure determination of a vanadium-dependent haloperoxidase from Ascophyllum nodosum at 2.0 A resolution. J Mol Biol, 293(3): 595–611

    Article  Google Scholar 

  • Weyand M, Schlichting I, Marabotti A, et al. 2002. Crystal structures of a new class of allosteric effectors complexed to tryptophan synthase. J Biol Chem, 277(12): 10647–10652

    Article  Google Scholar 

  • Winter J M, Moore B S. 2009. Exploring the chemistry and biology of vanadium-dependent haloperoxidases. J Biol Chem, 284(28): 18577–18581

    Article  Google Scholar 

  • Wixon J, Kell D. 2000. The Kyoto encyclopedia of genes and genomes-KEGG. Yeast, 17: 48–55

    Article  Google Scholar 

  • Xu Jia, Aileni M, Abbagani S, et al. 2010. A reliable and efficient method for total RNA isolation from various members of Spurge Family (Euphorbiaceae). Phytochem Anal, 21(5): 395–398

    Article  Google Scholar 

  • Yao Jianting, Fu Wandong, Wang Xiuliang, et al. 2009. Improved RNA isolation from Laminaria japonica Aresch (Laminariaceae, Phaeophyta). J Appl Phycol, 21: 233–238

    Article  Google Scholar 

  • Ye Jia, Fang Lin, Zheng Hongkun, et al. 2006. WEGO: a web tool for plotting GO annotations. Nucleic Acids Res, 34(Web Server issue): W293–297

    Article  Google Scholar 

  • Zdobnov E M, Apweiler R. 2001. InterProScan—an integration platform for the signature-recognition methods in InterPro. Bioinformatics, 17(9): 847–848

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xumin Wang or Tao Liu.

Additional information

Foundation item: The National Natural Science Foundation of China under contract Nos 41206116, 31140070 and 31271397; Technology Project of Ocean and Fisheries of Guangdong Province under contract No. A201201E03; the Fundamental Research Funds for the Central Universities under contract No. 201262003; the algal transcriptome sequencing was supported by OneKP Project (www.onekp.com).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, X., Wang, X., Chi, S. et al. Analysis of Saccharina japonica transcriptome using the high-throughput DNA sequencing technique and its vanadium-dependent haloperoxidase gene. Acta Oceanol. Sin. 33, 27–36 (2014). https://doi.org/10.1007/s13131-014-0438-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-014-0438-1

Key words

Navigation