Skip to main content
Log in

The decadally modulating eddy field in the upstream Kuroshio Extension and its related mechanisms

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

Both the level of the high-frequency eddy kinetic energy (HF-EKE) and the energy-containing scale in the upstream Kuroshio Extension (KE) undergo a well-defined decadal modulation, which correlates well with the decadal KE path variability. The HF-EKE level and the energy-containing scales will increase with unstable KE path and decrease with stable KE path. Also the mesoscale eddies are a little meridionally elongated in the stable state, while they are much zonally elongated in the unstable state. The local baroclinic instability and the barotropic instability associated with the decadal modulation of HF-EKE have been investigated. The results show that the baroclinic instability is stronger in the stable state than that in the unstable state, with a shorter characteristic temporal scale and a larger characteristic spatial scale. Meanwhile, the regional-averaged barotropic conversion rate is larger in the unstable state than that in the stable state. The results also demonstrate that the baroclinic instability is not the dominant mechanism influencing the decadal modulation of the mesoscale eddy field, while the barotropic instability makes a positive contribution to the decadal modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arbic B K, Flierl G R. 2004. Effects of mean flow direction on energy, isotropy, and coherence of baroclinically unstable beta-plane geostrophic turbulence. Journal of Physical Oceanography, 34(1): 77–93

    Article  Google Scholar 

  • Berloff P, Meacham S P. 1998. On the stability of the wind-driven circulation. Journal of Marine Research, 56(5): 937–993

    Article  Google Scholar 

  • Bessières L, Rio M H, Dufau C, et al. 2013. Ocean state indicators from MyOcean altimeter products. Ocean Science, 9(3): 545–560

    Article  Google Scholar 

  • Charney J G, Stern M E. 1962. On the stability of internal baroclinic jets in a rotating atmosphere. Journal of the Atmospheric Sciences, 19(2): 159–172

    Article  Google Scholar 

  • Chelton D B, Schlax M G, Samelson R M. 2011. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2): 167–216

    Article  Google Scholar 

  • Dewar W K, Bane J M. 1989. Gulf stream dynamics. Pa: eddy energetics at 73°W. Journal of Physical Oceanography, 19(10): 1574–1587

    Article  Google Scholar 

  • Dijkstra H A, Ghil M. 2005. Low-frequency variability of the largescale ocean circulation: a dynamical systems approach. Reviews of Geophysics, 43(3): doi: 10.1029/2002RG000122

    Google Scholar 

  • Ducet N, Le Traon P Y, Reverdin G. 2000. Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS- 1 and -2. Journal of Geophysical Research: Oceans (1978–2012), 105(C8): 19477–19498

    Article  Google Scholar 

  • Eady E T. 1949. Long waves and cyclone waves. Tellus A, 1(3): 33–52

    Article  Google Scholar 

  • Ferrari R, Wunsch C. 2008. Ocean circulation kinetic energy: reservoirs, sources, and sinks. Annual Review of Fluid Mechanics, 41(1): 253–282

    Article  Google Scholar 

  • Frisch U. 1995. Turbulence: The Legacy of A.N. Kolmogorov. Cambridge: Cambridge University Press

    Google Scholar 

  • Ingleby B, Huddleston M. 2007. Quality control of ocean temperature and salinity profiles-Historical and real-time data. Journal of Marine Systems, 65(1): 158–175

    Article  Google Scholar 

  • Jackett D R, McDougall T J. 1997. A neutral density variable for the world's oceans. Journal of Physical Oceanography, 27(2): 237–263

    Article  Google Scholar 

  • Kobashi F, Kawamura H. 2002. Seasonal variation and instability nature of the North Pacific Subtropical Countercurrent and the Hawaiian Lee Countercurrent. Journal of Geophysical Research: Oceans (1978–2012), 107(C11): 61–618

    Article  Google Scholar 

  • Le Traon P Y, Dibarboure G, Ducet N. 2001. Use of a high-resolution model to analyze the mapping capabilities of multiple-altimeter missions. Journal of Atmospheric and Oceanic Technology, 18(7): 1277–1288

    Article  Google Scholar 

  • Le Traon P Y, Nadal F, Ducet N. 1998. An improved mapping method of multisatellite altimeter data. Journal of Atmospheric and Oceanic Technology, 15(2): 522–534

    Article  Google Scholar 

  • Nonaka M, Xie Shangping. 2003. Covariations of sea surface temperature and wind over the Kuroshio and its extension: evidence for ocean-to-atmosphere feedback. Journal of Climate, 16(9): 1404–1413

    Article  Google Scholar 

  • Pedlosky J. 1964. The stability of currents in the atmosphere and the ocean: part I. Journal of the Atmospheric Sciences, 21(2): 201–219

    Article  Google Scholar 

  • Phillips N A. 1954. Energy Transformations and Meridional Circulations associated with simple Baroclinic Waves in a two-level, Quasi-geostrophic Model. Tellus A, 6(3): 273–286

    Article  Google Scholar 

  • Pierini S. 2006. A Kuroshio Extension system model study: decadal chaotic self-sustained oscillations. Journal of Physical Oceanography, 36(8): 1605–1625

    Article  Google Scholar 

  • Qiu Bo. 2002. The Kuroshio Extension system: its large-scale variability and role in the midlatitude ocean-atmosphere interaction. Journal of Oceanography, 58(1): 57–75

    Article  Google Scholar 

  • Qiu Bo, Chen Shuiming. 2005. Variability of the Kuroshio Extension jet, recirculation gyre, and mesoscale eddies on decadal time scales. Journal of Physical Oceanography, 35(11): 2090–2103

    Article  Google Scholar 

  • Qiu Bo, Chen Shuiming. 2006. Decadal variability in the formation of the North Pacific Subtropical Mode Water: oceanic versus atmospheric control. Journal of Physical Oceanography, 36(7): 1365–1380

    Article  Google Scholar 

  • Qiu Bo, Chen Shuiming. 2010. Eddy-mean flow interaction in the decadally modulating Kuroshio Extension system. Deep Sea Research Part: Topical Studies in Oceanography, 57(13–14): 1098–1110

    Article  Google Scholar 

  • Qiu Bo, Kelly K A. 1993. Upper-ocean heat balance in the Kuroshio Extension region. Journal of Physical Oceanography, 23(9): 2027–2041

    Article  Google Scholar 

  • Qiu Bo, Scott R B, Chen Shuiming. 2008. Length scales of eddy generation and nonlinear evolution of the seasonally modulated South Pacific Subtropical Countercurrent. Journal of Physical Oceanography, 38(7): 1515–1528

    Article  Google Scholar 

  • Scott R B, Wang Faming. 2005. Direct evidence of an oceanic inverse kinetic energy cascade from satellite altimetry. Journal of Physical Oceanography, 35(9): 1650–1666

    Article  Google Scholar 

  • Smith K S. 2007. The geography of linear baroclinic instability in Earth's oceans. Journal of Marine Research, 65(5): 655–683

    Article  Google Scholar 

  • Taguchi B, Xie Shangping, Schneider N, et al. 2007. Decadal variability of the Kuroshio Extension: observations and an eddy-resolving model hindcast. Journal of Climate, 20(11): 2357–2377

    Article  Google Scholar 

  • Tai C K, White W B. 1990. Eddy variability in the Kuroshio Extension as revealed by Geosat altimetry: energy propagation away from the jet, Reynolds stress, and seasonal cycle. Journal of Physical Oceanography, 20(11): 1761–1777

    Article  Google Scholar 

  • Tulloch R, Marshall J, Hill C, et al. 2011. Scales, growth rates, and spectral fluxes of baroclinic instability in the ocean. Journal of Physical Oceanography, 41(6): 1057–1076

    Article  Google Scholar 

  • Tulloch R, Marshall J, Smith K S. 2009. Interpretation of the propagation of surface altimetric observations in terms of planetary waves and geostrophic turbulence. Journal of Geophysical Research: Oceans, 114(C2): doi: 10.1029/2008JC005055

    Google Scholar 

  • Vivier F, Kelly K A, Thompson L A. 2002. Heat budget in the Kuroshio extension region: 1993–99. Journal of Physical Oceanography, 32(12): 3436–3454

    Article  Google Scholar 

  • Wang Shihong, Liu Zhiliang, Pang Chongguang. 2015. Geographical distribution and anisotropy of the inverse kinetic energy cascade, and its role in the eddy equilibrium processes. Journal of Geophysical Research: Oceans, 120(7): 4891–4906, doi: 10.1002/014JC010476

    Google Scholar 

  • Waterman S, Hogg N G, Jayne S R. 2011. Eddy-mean flow interaction in the Kuroshio extension region. Journal of Physical Oceanography, 41(6): 1182–1208

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiliang Liu.

Additional information

Foundation item: The National Natural Science Foundation of China under contract No. 41276026; the Special Fund for Strategic Pilot Technology Chinese Academy of Sciences under contract No. XDA11020301; the Joint Fund between Natural Science Foundation of China and Shandong Province under contract No. U1406401.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Liu, Z., Pang, C. et al. The decadally modulating eddy field in the upstream Kuroshio Extension and its related mechanisms. Acta Oceanol. Sin. 35, 9–17 (2016). https://doi.org/10.1007/s13131-015-0741-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-015-0741-5

Keywords

Navigation