Skip to main content

Advertisement

Log in

Signatures of hyperthermal events in the Late Paleocene–Early Eocene limestone succession of the Jaisalmer basin, India

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

Here, radiogenic strontium isotopes, and stable carbon and oxygen isotopes analyses of the Paleocene-Eocene limestones of the Jaisalmer basin, Western India are carried out to find out the evidences of Paleocene–Eocene thermal maximum and Early Eocene Climatic Optimum. The occurrence of Numulites burdigalensis suggests the succession to be a Paleocene–Eocene interval that is also confirmed by the radiogenic strontium isotope ratios. The low Mn/Sr ratio (< 2) of the studied limestones suggest that they are pristine and can present the original isotopic signatures. The δ13C values of the limestones in the studied succession are negative and there are two prominent shifts in δ13C curve towards the more negative side, one in the lower part and another in the middle of the succession. The lower one represents the Paleocene–Eocene Thermal Maximum and the middle one represents the Early Eocene Climatic Optimum. These two peaks are interpreted as the addition of carbon from the atmosphere or land as a result of the regional tectonics which could be connected with India-Asia collision. Also, the shift in the δ18O (−6.38 to −9.84‰), values can be linked with the Eocene warming events that are coeval with the carbon isotopic stages I and II. The effect of risen temperatures during these two hyperthermal events (PETM and EECO) was such that the succession is rich in larger foraminifera at carbon isotope stage I and carbon isotope stage II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anagnostou E, John EH, Edgar KM, Foster GL, Ridgwell A, Inglis GN, Pancost RD, Lunt DJ, Pearson PN (2016) Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate. Nature 533(7603):380–384 https://doi.org/10.1038/nature17423

    Article  Google Scholar 

  • Armstrong RL (1971) Glacial erosion and the variable isotopic composition of strontium in seawater. Nature 230:132–133

    Google Scholar 

  • Banner JL (1995) Application of the isotope and trace element geochemistry of strontium to studies of diagenesis in carbonate systems. Sedimentology 42:805–824

    Article  Google Scholar 

  • Banner JL (2004) Radiogenic isotopes: systematics and applications to earth surface processes and chemical stratigraphy. Earth Sci Rev 65(3–4):141–194

    Article  Google Scholar 

  • Banner JL, Hanson GN (1990) Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis. Geochim Cosmochim Acta 54:3123–3137

    Article  Google Scholar 

  • Brands U, Veizer J (1980) Chemical diagenesis of a multi component carbonate system: 1. Trace elements J Sediment Petrol 50:1219–1236

    Google Scholar 

  • Burke WH, Denison RE, Hetherington EA, Koepnick RB, Nelson FF, Otto JB (1982) Variations of seawater 87Sr/86Sr throughout Phanerozoic time. Geology 10(10):516–519

    Article  Google Scholar 

  • Cramer BS, Wright JD, Kent DV, Aubry MP (2003) Orbital climate forcing of δ C13 excursions in the late Paleocene–early Eocene (chronsC24n-C25n). Paleoceanogr. https://doi.org/10.1029/2003PA000909

    Article  Google Scholar 

  • Crouch EM, Shepherd CL, Morgans HEG, Naafs BDA, Dallanave E, Phillips A, Hollis CJ, Pancost RD (2020) Climatic and environmental changes across the early Eocene climatic optimum at mid-Waipara River, Canterbury Basin. New Zealand Earth Sci Rev 200:102961

    Article  Google Scholar 

  • Derry LA, Kaufman AJ, Jacobsen SB (1992) Sedimentary cycling and environmental change in the Late Proterozoic: evidence from stable and radiogenic isotopes. Geochim Cosmochim Acta 56(3):1317–1329

    Article  Google Scholar 

  • Dickens GR, O’Neil JR, Rea DK, Owen RM (1995) Dissociation of oceanic methane hydrates as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanogr 10:965–971. https://doi.org/10.1029/95PA02087

    Article  Google Scholar 

  • Dickens GR, Castillo MM, Walker JCG (1997) A blast of gas in the latest Paleocene: simulating first order effects of massive dissociation of oceanic methane hydrate. Geology 25:259–262. https://doi.org/10.1130/0091-7613(1997)025%3c0259:ABOGIT%3e2.3.CO;2

    Article  Google Scholar 

  • Ditchfield PW, Marshall JD, Pirrie D (1994) High latitude palaeo-temperature variations: new data from the Thithonian to Eocene of James Ross Island. Antarctica Palaeogeogr Palaeoclimatol Palaeoecol 107(1–2):79–101

    Article  Google Scholar 

  • Goswami V, Singh SK, Bhushan R, Rai VK (2012) Temporal variations in 87Sr/86Sr and єNd in sediments of the southeastern Arabian Sea: impact of monsoon and surface water circulation. Geochem Geophy Geosyst 13:Q01001. https://doi.org/10.1029/2011GC003802

    Article  Google Scholar 

  • Grocke DR, Price GD, Ruffell AH, Mutterlose J, Baraboshkin E (2003) Isotopic evidence for Late Jurassic–Early Cretaceous climate change. Palaeogeogr Palaeoclimatol Palaeoecol 202(1–2):97–118

    Article  Google Scholar 

  • Gunnell Y (1998) The interaction between geological structure and global tectonics in multistoried landscape development: a denudation chronology of the south Indian shield. Basin Res 10:281–310

    Article  Google Scholar 

  • Halverson GP, Dudás FO, Maloof AC, Bowring SA (2007) Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater. Palaeogeogr Palaeoclimatol Palaeoecol 256(3–4):103–129

    Article  Google Scholar 

  • Hesselbo SP, Meister C, Grocke DR (2000) A potential global stratotype for the Sinemurian–Pliensbachian boundary (Lower Jurassic), Robin Hood’s Bay, UK: ammonite faunas and isotope stratigraphy. Geol Mag 137(6):601–607

    Article  Google Scholar 

  • Hodell DA, Mueller PA, McKenzie JA, Mead GA (1989) Strontium isotope stratigraphy and geochemistry of the late Neogene Ocean. Earth Planet Sci Lett 92:165–178

    Article  Google Scholar 

  • Hudson JD (1977) Stable isotopes and limestone lithification. J Geol Soc London 133(6):637–660

    Article  Google Scholar 

  • Jacobsen SB, Kaufman AJ (1999) The Sr, C and O isotopic evolution of Neoproterozoic seawater. Chem Geol 161(1–3):37–57

    Article  Google Scholar 

  • James NP, Bourque PA (1992) Reefs and mounds. In: Walker RG, James NP (eds) Facies models. Geological Association of Canada, St. Johns, Newfoundland, pp 323–345

    Google Scholar 

  • Jenkins HC, Jones CE, Grocke DR, Hesselbo SP, Parkinson DN (2002) Chemostratigraphy of the Jurassic System: applications, limitations and implications for paleoceanography. J Geol Soc London 159(4):351–378

    Article  Google Scholar 

  • John CM, Bohaty SM, Zachos JC, Sluijs A, Gibbs S, Brinkhuis H, Bralower TJ (2008) North American continental margin records of the Paleocene−Eocene thermal maximum: implications for global carbon and hydrological cycling. Paleoceanogr. https://doi.org/10.1029/2007PA001465

    Article  Google Scholar 

  • Jones B, Desrochers A (1992) Shallow platform carbonates. In: Walker RG, James NP (eds) Facies models; response to sea level change. Geological Association of Canada, St. Johns, Newfoundland, pp 277–301

    Google Scholar 

  • Jones CE, Jenkyns HC, Hesselbo SP (1994) Strontium isotopes in Early Jurassic Seawater. Geochim Cosmochim Acta 58(4):1285–1301

    Article  Google Scholar 

  • Jones CE, Jenkyns HC, Coe AL, Hesselbo SP (1994) Strontium isotopes in Jurassic and cretaceous seawater. Geochim Cosmochim Acta 58(14):3061–3074

    Article  Google Scholar 

  • Kabanov PB (2009) Benthic carbonate facies of the phanerozoic: review and example from the carboniferous of the Russian Platform1 ISSN 0869–5938. Stratigr Geol Correl 17:493–509

    Article  Google Scholar 

  • Kah LC, Sherman AG, Narbonne GM, Knoll AH, Kaufman AJ (1999) δ13C stratigraphy of the Proterozoic Bylot supergroup, Baffin Island, Canada: implications for regional lithostratigraphic correlations. Canadian J Earth Sci 36(3):313–332

    Article  Google Scholar 

  • Kaufman AJ, Knoll AH (1995) Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications. Precambrian Res 73(1–4):27–49

    Article  Google Scholar 

  • Kaufman AJ, Knoll AH, Awramik SM (1992) Biostratigraphic and chemostratigraphic correlation of Neoproterozoic sedimentary successions: upper Tindir Group, northwestern Canada, as a test case. Geology 20(2):181–185

    Article  Google Scholar 

  • Kaufman AJ, Jacobsen SB, Knoll AH (1993) The Vendian record of Sr and C isotopic variations in seawater: implications for tectonics and Paleoclimate. Earth Planet Sci Lett 120(3–4):409–430

    Article  Google Scholar 

  • Knoll AH (2000) Learning to tell Neoproterozoic time. Precambrian Res 100(1–3):3–20

    Article  Google Scholar 

  • Liu YG, Miah MRU, Schmitt RA (1988) Cerium, a chemical tracer for paleo-oceanic redox conditions. Geochim Cosmochim Acta 52:1361–1371

    Article  Google Scholar 

  • Lourens LJ, Sluijs A, Kroon D, Zachos JC, Thomas E, Röhl U, Bowles J, Raffi I (2005) Astronomical pacing of late Palaeocene to early Eocene global warming events. Nature 435:1083–1087

    Article  Google Scholar 

  • Maheshwari A, Sial AN, Mathur SC, Tripathi A (2010) Carbon isotope excursion at Paleocene–Eocene transition in Jaisalmer Basin, western Rajasthan. India Carb Evap 25:269–274

    Article  Google Scholar 

  • McArthur JM, Howarth RJ, Bailey TR (2001) Strontium isotope stratigraphy: LOWESS Version 3: best fit to the marine Sr-isotope curve for 0–509 Ma and accompanying look-up table for deriving numerical age. Geology 109:155–170

    Article  Google Scholar 

  • Muehlenbachs K (1998) The oxygen isotopic composition of the oceans, sediments and the seafloor. Chem Geol 145:263–273

    Article  Google Scholar 

  • Nagarajan R, Sial AN, Armstrong-Altrin JS, Madhavaraju J, Nagendra R (2008) Carbon and oxygen isotope geochemistry of Neoproterozoic limestones of the Shahabad Formation, Bhima Basin, Karnataka, southern India. Rev Mex Cienc Geol 25(2):225–235

    Google Scholar 

  • Nicolo MJ, Dickens GR, Hollis CJ, Zachos JC (2007) Multiple early Eocene hyperthermals: their sedimentary expression on the New Zealand continental margin and in the deep sea. Geology 35:699–702. https://doi.org/10.1130/G23648A.1

    Article  Google Scholar 

  • Norris RD, Röhl U (1999) Carbon cycling and chronology of climate warming during the Palaeocene/Eocene transition. Nature 401:775–778

    Article  Google Scholar 

  • Orue-Etxebarria X, Pujalte V, Bernaola G, Apellaniz E, Baceta JI, Payros A, Nunez-Betelu K, Serra-Kiel J, Tosquella J (2001) Did the late Paleocene thermal maximum affect the evolution of larger foraminifers? Evidence from calcareous plankton of the Campo Section (Pyrenees, Spain). Marine Micropaleontol 41:45–71. https://doi.org/10.1016/S0377-8398(00)00052-9

    Article  Google Scholar 

  • Patra A, Singh BP (2015) Facies characteristics and depositional environments of the Paleocene–Eocene strata of the Jaisalmer basin, western India. Carbonate Evaporite 30:331–346

    Article  Google Scholar 

  • Patra A, Singh BP (2017) Geochemistry of Eocene limestones of the Jaisalmer basin, Rajasthan, India: implications on depositional conditions and sources of rare earth elements. Geochem Int 55:1180–1192

    Article  Google Scholar 

  • Podlaha OG, Mutterlos J, Veizer J (1998) Preservation of δ18O and δ13C in belemnite rostra from Jurassic/Early Cretaceous successions. American J Sci 298(4):324–347

    Article  Google Scholar 

  • Price GD, Sellwood BW (1997) Warm palaeotemperatures from high Late Jurassic palaeolatitudes (Falkland Plateau): ecological, environmental or diagenetic controls? Palaeogeogr Palaeoclimatol Palaeoecol 129(3–4):315–327

    Article  Google Scholar 

  • Price GD, Ruffell AH, Jones CE, Kalin RM, Mutterlose J (2000) Isotopic evidence for temperature variation during the early Cretaceous (late Ryazanian–mid-Hauterivian). J Geol Soc London 157(2):335–343

    Article  Google Scholar 

  • Pujalte V, Orue-Etxebarria X, Schmitz B, Tosquella J, Baceta JI, Payros A, Bernaola G, Caballero F and Apellaniz E (2003) Basal Ilerdian (earliest Eocene) turnover of larger foraminifers: Age constraints based on calcareous plankton and δ13C isotopic profiles from new southern Pyrenean sections (Spain). In: Wing SL, Gingerich PD, Schmitz B and Thomas E (eds) Causes and Consequences of Globally Warm Climates in the Early Paleogene. Geological Society of America Special Papers, vol 369, pp 205–221

  • Pujalte V, Schmitz B, Baceta JI, Orue-Etxebarria X, Bernaola G, Dinarès-Turel J, Payros A, Apellániz E, Caballero F (2009) Correlation of the Thanetian–Ilerdian turnover of larger foraminifera and the Paleocene–Eocene thermal maximum: confirming evidence from the Campo area (Pyrenees, Spain). Geol Acta 7:161–175

    Google Scholar 

  • Ray D, Shukla AD (2018) The Mukundpura meteorite, a new fall of CM chondrite. Planet Space Sci. https://doi.org/10.1016/j.pss.2017.11.005

    Article  Google Scholar 

  • Robinson SA (2011) Shallow-water carbonates record of the Paleocene–Eocene thermal maximum from a Pacific Ocean guyot. Geology 39:51–54. https://doi.org/10.1130/G31422.1

    Article  Google Scholar 

  • Röhl U, Bralower TJ, Norris RD, Wefer G (2000) New chronology for the late Paleocene thermal maximum and its environmental implications. Geology 28:927–930. https://doi.org/10.1130/0091-7613(2000)28%3c927:NCFTLP%3e2.0.CO;2

    Article  Google Scholar 

  • Samanta A, Sarkar A, Bera MK, Rai J, Rathore SS (2013) Late Paleocene–early Eocene carbon isotope stratigraphy from a near-terrestrial tropical section and antiquity of Indian mammals. J Earth Syst Sci 122(1):163–171

    Article  Google Scholar 

  • Scheibner C, Speijer RP, Marzouk AM (2005) Turnover of larger foraminifers during the Paleocene–Eocene thermal maximum and paleoclimatic control on the evolution of platform ecosystems. Geology 33:493–496. https://doi.org/10.1130/G21237.1

    Article  Google Scholar 

  • Schlager W (2005) Sedimentology and sequence stratigraphy of carbonate rocks. Concepts Sedimentol Paleontol 8:1–200

    Google Scholar 

  • Schmidt RA, Smith RH, Lasch JE, Mosen AW, Olehy DA, Vasilevshis J (1963) abundances of fourteen rare-earth elements, scandium, and yttrium in meteoritic and terrigenous matter. Geochim Cosmochim Acta 27(6):577–622

    Article  Google Scholar 

  • Sexton PF, Norris RD, Wilson PA, Palike H, Westerhold T, Rohl U, Bolton CT, Gibbs S (2011) Eocene global warming events driven by ventilation of oceanic dissolved organic carbon. Nature 471:349–352

    Article  Google Scholar 

  • Shukla MK, Sharma A (2018) Carbon isotope and REE characteristics of the Paleocene–Eocene shallow marine Subathu Formation from the NW Himalaya (India) and their paleoenvironmental implications. Solid Earth Sci. https://doi.org/10.1016/j.chemer.2018.06.005

    Article  Google Scholar 

  • Sigal J, Singh NP, Lys M (1971) The Paleocene–Lower Eocene boundary in the Jaisalmer area India. J Foramin Res 1(4):190–194

    Article  Google Scholar 

  • Singh NP (1976) Micropaleontological control in subsurface Tertiary sequence of Jaisalmer basin, West Rajasthan, India. IV Indian Colloquium, Micropalaeontol Stratigr 259–278

  • Singh NP (1984) Addition to the Tertiary biostratigraphy of Jaisalmer basin. Pet Asia J 11(1):106–128

    Google Scholar 

  • Singh NP (1996) Mesozoic-Tertiary biostratigraphy and biogeochronological datum planes in Jaisalmer basin, Rajasthan, pp 63–89. In: Pandey j et al. (eds) Contributions to XV Indian Colloquium on Micropalaeontology Stratigraphy. ONGC, Dehradun

  • Singh NP (2003) Contribution of biostratigraphic studies in strati-graphic evaluation of West Rajasthan Shelf. Geol Mag Spec 6:79–104

    Google Scholar 

  • Singh NP (2007) Cenozoic Lithostratigraphy of the Jaisalmer Basin. Rajasthan J Paleontol Soc India 52(2):129–154

    Google Scholar 

  • Singh SK, Rai SK, Krishnaswami S (2008) Sr and Nd isotopes in River sediments from the Ganga basin: sediment provenance and spatial variability in physical erosion. J Geophy Res 113:F03006. https://doi.org/10.1029/2007JF000909

    Article  Google Scholar 

  • Singh BP, Singh YR, Andotra DS, Patra A, Srivastava VK, Guruaribam V, Sijagurumayum U, Singh GP (2016) Tectonically driven late Paleocene (57.9-54.7 Ma) transgression and climatically forced latest middle Eocene (41.3-38.0 Ma) regression on the Indian subcontinent. J Asian Earth Sci 115:124–132

    Article  Google Scholar 

  • Svensen HS, Planke A, Malthe-Sørenssen B, Jamtveit R, Myklebust TR, Eidem SS (2004) Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature 429:542–545. https://doi.org/10.1038/nature02566

    Article  Google Scholar 

  • Veizer J (1983) Chemical diagenesis of carbonates; theory and application of trace element technique. In: Arthur MA, Anderson TF, Kaplan IR, Veizer JL (eds) Stable isotopes in sedimentary geology SEPM, pp 3–100

  • Veizer J (1989) Strontium isotopes in seawater through time. Annu Rev Earth Planet Sci 17:141–167

    Article  Google Scholar 

  • Veizer J, Clayton RN, Hinton RW (1992) Geochemistry of Precambrian carbonates IV Early Paleoproterzoic (2.25 ± 0.25 Ga) seawater. Geochim Cosmochim Acta 56(3):875–885

    Article  Google Scholar 

  • Wallmann K (2001) The geological water cycle and the evolution of marine δ18O values. Geochim Cosmochim Acta 65:2469–2485

    Article  Google Scholar 

  • Zachos JC, Stott LD, Lohmann KC (1994) Evolution of early Cenozoic marine temperatures. Paleoceanogr 9:353–387

    Article  Google Scholar 

  • Zachos JC, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693

    Article  Google Scholar 

  • Zachos JC, Bohaty SM, John CM, McCarren H, Kelly DC, Nielsen T (2007) The Paleocene–Eocene carbon isotope excursion: constraints from individual shell planktonic foraminifer records. Philos Tans Royal Soc Series A 365:1829–1842

    Google Scholar 

  • Zachos JC, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse warming and Carbon-cycle dynamics. Nature 451:279–283. https://doi.org/10.1038/nature06588

    Article  Google Scholar 

  • Zachos JC, McCarren H, Murphy B, Rӧhl U, Westerhold T (2010) Tempo and scale of late Paleocene and early Eocene carbon isotope cycles: implications for the origin of hyperthermals. Earth Planet Sci Lett 299:242–249

    Article  Google Scholar 

  • Zamagni J, Mutti M, Košir A (2012) The evolution of mid Paleocene–early Eocene coral communities: how to survive during rapid global warming. Palaeogeogr Palaeoclimatol Palaeoecol 317–318:48–65. https://doi.org/10.1016/j.palaeo.2011.12.010

    Article  Google Scholar 

Download references

Acknowledgements

A. Patra is thankful to the authorities of the Physical Research Laboratory for Post-doctoral fellowship to him. Nirmal Kumar is also thanked for his help during Laboratory work. The authors are grateful to Dr. N. Juyal for his valuable suggestions in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. P. Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patra, A., Shukla, A.D., Kumar, S. et al. Signatures of hyperthermal events in the Late Paleocene–Early Eocene limestone succession of the Jaisalmer basin, India. Carbonates Evaporites 36, 1 (2021). https://doi.org/10.1007/s13146-020-00666-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13146-020-00666-6

Keywords

Navigation