Skip to main content

Advertisement

Log in

Molecular Aberrations in Periampullary Carcinoma

  • Review Article
  • Published:
Indian Journal of Surgical Oncology Aims and scope Submit manuscript

Abstract

Periampullary carcinomas are a group of rare lesions around the ampulla of Vater including distal bile duct and duodenum and are very different from pancreatic ductal adenocarcinoma clinically and pathologically, but the molecular alterations in these tumours are less known. Genetic alterations of the KRAS oncogenes, tumour suppressor genes p53, p16 and MADH4 (SMAD4/DPC4) and genome maintenance genes (MLHI, MSH2) are commonly altered in pancreatic adenocarcinoma and have also been described in periampullary cancers, although at lower frequencies. To understand the molecular characteristics of non-pancreatic periampullary carcinomas, ampullary cancers can now be further defined accurately into their intestinal and pancreatobiliary subtypes using histomolecular profiling. KRAS mutation, which occurs in most pancreatic cancers, is found to occur less frequently in ampullary (42–52%), biliary (22–23%) and duodenal cancers (32–35%). Mutations are also found in tumour suppressor genes (p53) and are associated with transformation of adenomas and low-grade carcinomas into high-grade carcinomas. Loss of DPC4 occurs late in ampullary carcinogenesis. This study summarizes the current knowledge in molecular aberrations in non-pancreatic periampullary cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sarmiento JM, Nagomey DM, Sarr MG, Farnell MB (2001) Periampullary cancers: are there differences? Surg Clin North Am 81(3):543–555

    Article  CAS  PubMed  Google Scholar 

  2. Fernandez-Cruz L (2001) Periampullary carcinoma. In: Holzheimer RG, Mannick JA (eds) Surgical treatment: evidence-based and problem-oriented. W. Zuckschwerdt Verlag GmbH, Munich

    Google Scholar 

  3. Dhir V, Mohandas K (1999) Epidemiology of digestive tract cancers in India IV. Gall bladder and pancreas. Indian J Gastroenterol 18(1):24–28

    CAS  PubMed  Google Scholar 

  4. Kim SG, Chan AO, Wu TT, Issa JP, Hamilton SR, Rashid A (2003a) Epigenetic and genetic alteration in duodenal carcinomas are distinct from biliary and ampullary carcinomas. Gastroenterology 124(5):1300–1310

    Article  PubMed  Google Scholar 

  5. He J, Ahuja N, Makary MA, Cameron JL, Eckhauser FE, Choti MA et al (2014) 2564 resected periampullary adenocarcinoma at single institution: trends over three decades. HPB 16:83–90

    Article  PubMed  Google Scholar 

  6. Chen JWC, Bhandari M, Astill DS, Wilson TG, Kow L, Brooke-Smith M et al (2010) Predicting patient survival after pancreaticoduodenectomy for malignancy: histopathological criteria based on perineural infiltration and lymphovascular invasion. HPB 12:101–108

    Article  PubMed  PubMed Central  Google Scholar 

  7. Baczako K, Buchler M, Beger H-G, Kirkpatrick CJ, Haferkamp O (1985) Morphogenesis and possible precursor lesions of invasive carcinoma of the papilla of Vater: epithelial dysplasia and adenoma. Hum Pathol 16:305–310

    Article  CAS  PubMed  Google Scholar 

  8. Ghadirian P, Lynch HT, Krewski D (2003) Epidemiology of pancreatic cancer: an overview. Cancer Detect Prev 27:87–93

    Article  CAS  PubMed  Google Scholar 

  9. Berberat PO, Kunzil BM, Gulbinas A, Ramanauskas T, Kleeff J, Muller MW, Wagner M, Friess H (2009) An audit of outcomes of a series of periampullary carcinomas. Eur J Surg Oncology 35(2):187–191

    Article  CAS  Google Scholar 

  10. Macgregor-Das AM, Iacobuzio-Donahue CA (2013) Molecular pathways in pancreatic carcinogenesis. J Surg Oncol 107:8–14

    Article  CAS  PubMed  Google Scholar 

  11. Hingorani SR, Tuveson DA (2003) Ras redux: rethinking how and where Ras acts. Curr Opin Genet Dev 13(1):6–13

    Article  CAS  PubMed  Google Scholar 

  12. Biankin AV, Wadell N, Kassahn KS et al (2012) Pancreatic cancer genomes reveals aberrations aberration in axon guidance pathway genes. Nature 491:399–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Almoguerra C, Shibata D, Forrester K et al (1988) Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 53:549–554

    Article  Google Scholar 

  14. Motojima, Tsunoda T, Kanematsu T, Nagata Y, Urano T, Shiku H (1991) Distinguishing pancreatic carcinoma from other periampullary carcinoma by analysis of mutation in Kirsten-ras oncogene. Ann Surg 214(6):657–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chung CH, Wilentz RE, Polak MM, Ramsoekh TB, Noorduyn LA, Gouma DJ (1996) Clinical significance of K-ras oncogene activation in ampullary neoplasms. J Clin Pathol 49(6):460–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mikhitarian K, Pollen M, Zhao Z, Shyr Y, Merchant N, Parikh A et al (2014) Epidermal growth factor receptor signaling pathway is frequently altered in ampullary carcinoma at protein and genetic levels. Mod Pathol 27(5):665–674

    Article  CAS  PubMed  Google Scholar 

  17. Schultz NA, Roslind A, Christensen IJ et al (2012a) Frequencies and prognostic role of KRAS and BRAF mutations in patients with localised pancreatic and ampullary adenocarcinoma. Pancreas 41:759–766

    CAS  PubMed  Google Scholar 

  18. Rashid A, Ueki T, Gao YT, Houlihan PS, Wallace C, Wang BS, Shen MC, Deng J, Hsing AW (2002) K-ras mutation, p53 overexpression, and microsatellite instability in biliary tract cancers: a population-based study in China. Clin Cancer Res 8(10):3156–3163

    CAS  PubMed  Google Scholar 

  19. Hsu M, Sasaki M, Igrashi S et al (2013) KRAS and GNAS mutations and P53 overexpression in biliary intraepithelial neoplasia and intrahepatic cholangiocarcinomas. Cancer 119:1669–1674

    Article  CAS  PubMed  Google Scholar 

  20. Fu T, Guzetta AA, Jeschke J et al (2013) KRAS G>A mutation favours poor tumour differentiation but may not be associated with poor prognosis in patients with curatively resected duodenal adenocarcinomas. Int J Cancer 132:2502–2509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dhillon AS, Meikle S, Peyssonnaux C, Grindlay J, Kaiser C, Steen H et al (2003) Raf-1 mutant that dissociates MEK/extracellular signal-regulated kinase activation from malignant transformation and differentiation but not proliferation. Mol Cell Biol 23:1983–1993. doi:10.1128/MCB.23.6.1983-1993.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aguirre-Ghiso JA, Estrada Y, Liu D, Ossowski L (2003) ERK (MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38(SAPK). Cancer Res 63:1684–1695

    CAS  PubMed  Google Scholar 

  23. Schönleben F, Qiu W, Allendorf JD, Chabot JA (2009) Molecular analysis of PIK3CA, BRAF, and RAS oncogenes in periampullary and ampullary adenomas and carcinomas. J Gastrointest Surg 13(8):1510–1516

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancers. Science 253:49–53

    Article  CAS  PubMed  Google Scholar 

  25. Scarpa A, Capelli P, Zamboni G, Oda T, Mukai K, Bonetti F et al (1993) Neoplasia of the ampulla of Vater, Ki-ras and p53 mutations. Am J Pathol 142(4):1163–1172

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Diamantis I, Karamitopoulou E, Perentes E, Zimmermann A (1995) p53 protein immunoreactivity in extrahepatic bile duct and gallbladder cancer: correlation with tumor grade and survival. Hepatology 22:774–779

    Article  CAS  PubMed  Google Scholar 

  27. Cheng Q, Luo X, Zhang B, Jiang X, Yi B, Wu M (2007) Distal bile duct carcinomas: prognostic factors after curative surgery. A series of 112 cases. Ann Surg Oncol 14(3):1212–1219

    Article  PubMed  Google Scholar 

  28. Hong SM, Cho H, Moskaluk CA, Yu E (2007) Zaika AI:p 63 and p73 expression in extrahepatic bile duct carcinoma and their clinical significance. J Mol Histol 38(3):167–175

    Article  CAS  PubMed  Google Scholar 

  29. Maitra A, Hruban RH (2008) Pancreatic cancer. Annual Review Pathol 3:157–188

    Article  CAS  Google Scholar 

  30. Oshima M, Okano K, Muraki S, Haba R, Maeba T, Suzuki Y et al (2013) Immunohistochemically detected expression of 3 major genes (CDKN2A/p16, TP53, and SMAD4/DPC4) strongly predicts survival in patients with resectable pancreatic cancer. Ann Surg 258:336–346

    Article  PubMed  Google Scholar 

  31. Schutte M, Hruban RH, Geradts J, Maynard R, Hilgers W, Rabindran SK et al (1997) Abrogation of the Rb/p16 tumor suppressive pathway in virtually all pancreatic carcinomas. Cancer Res 57:3126–3130

    CAS  PubMed  Google Scholar 

  32. Esposito I, Seiler C, Bergmann F, Kleeff J, Friess H, Schirmacher P (2007) Hypothetical progression model of pancreatic cancer with origin in the centroacinar-acinar compartment. Pancreas 35:212–217

    Article  PubMed  Google Scholar 

  33. Yuan LW, Tang W, Kokudo N, Seyama Y, Shi YZ, Karako H, Zhao B, Sugawara Y, Nagawa H, Makuuchi M (2005) Disruption of pRbp16INK4 pathway: a common event in ampullary carcinogenesis. Hepato-Gastroenterology 52:55–59

    CAS  PubMed  Google Scholar 

  34. Moore PS, Sipos B, Orlandini S et al (2001) Genetic profile of 22 pancreatic carcinoma cell lines: analysis of K-ras, p53, p16 and DPC4/Smad4. Virchows Arch 439(6):798–802

    Article  CAS  PubMed  Google Scholar 

  35. Tuncer E, Şen türk N, Arici S, Düzcan SE, Demirka NÇ (2011) Expression of p16 protein and cyclin D1 in periampullary carcinomas. Turk Patoloji Derg 27(1):17–22

    PubMed  Google Scholar 

  36. Hahn SA, Schutte M, Atms H, Moskaluk CA, LT DC, Rozenblum E et al (1996) DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271:350–353

    Article  CAS  PubMed  Google Scholar 

  37. McCarthy DM, Hruban RH, Argani P, Howe JR, Conlon KC, Brennan MF et al (2003) Role of the DPC4 tumor suppressor gene in adenocarcinoma of the ampulla of Vater: analysis of 140 cases. Mod Pathol 16(3):272–278

    Article  PubMed  Google Scholar 

  38. Nicholas Agoff S, Crispin DA, Bronner MP, Dail DH, Hawes SE, Rodger C (2001) Haggitt, neoplasms of the ampulla of Vater with concurrent pancreatic intraductal neoplasia: a histological and molecular study. Mod Pathol 14(3):139–146

    Article  Google Scholar 

  39. Apple SK, Hecht JR, Lewin DN, Jahromi SA, Grody WW, Nieberg RK (1999) Immunohistochemical evaluation of K-ras, p53, and HER-2/neu expression in hyperplastic, dysplastic, and carcinomatous lesions of the pancreas: evidence for multistep carcinogenesis. Hum Pathol 30:123–129

    Article  CAS  PubMed  Google Scholar 

  40. Perrone G, Santini D, Verzi A, Vincenzi B, Borzomati D, Vecchio F, Coppola R, Antinori A, Magistrelli P, Tonini G, Rabitti C (2006) COX-2 expression in ampullary carcinoma: correlation with angiogenesis process and clinicopathological variables. J Clin Pathol 59:492–496. doi:10.1136/jcp.2005.030098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim HJ, Sohn TS, Lee KT et al (2003b) Expression of cyclooxygenase-2 and its correlation with clinicopathologic factors of ampulla of Vater cancer. J Korean Med Sci 18:218–224

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chen L, Tao SF, Zheng YX (2006) Prognostic significance of vascular endothelial growth factors expression and microvessel density in carcinoma of ampulla of vater. Hepato-Gastroenterology 53(67):45–50

    CAS  PubMed  Google Scholar 

  43. Vaziri H, Schachter F, Uchida I et al (1993) Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes. Am J Hum Genet 52:661–667

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Burger AM, Bibby MC, Double JA (1997) Telomerase activity in normal and malignant mammalian tissues: feasibility of telomerase as a target for cancer chemotherapy. Br J Cancer 75:516–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Balcom JH, Keck T, Warshaw AL, Antoniu B, Graeme-Cook F, Fernandez-del Castillo C Telomerase activity in periampullary tumors correlates with aggressive malignancy. Ann Surg 234(3):344–351

  46. Beck F, Tata F, Chawengsaksophak K (2000) Homeobox genes and gut development. BioEssays 22:431–441

    Article  CAS  PubMed  Google Scholar 

  47. Jin T, Drucker DJ (1996) Activation of proglucagon gene transcription through a novel promoter element by the caudal-related homeodomain protein cdx-2/3. Mol Cell Biol 16:19–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hansel DE, Maitra A, Lin JW, Goggins M, Argani P, Yeo CJ et al (2005) Expression of the caudal-type homeodomain transcription factors CDX 1/2 and outcome in carcinomas of the ampulla of Vater. J Clin Oncol 23:9

    Article  Google Scholar 

  49. Sessa F, Furlan D, Zampatti C, Carnevali I, Franzi F, Capella C (2007) Prognostic factors for ampullary adenocarcinomas: tumor stage, tumor histology, tumor location, immunohistochemistry and microsatelite instability. Virchows Arch 451(3):649–657

    Article  CAS  PubMed  Google Scholar 

  50. Hwang HW, Mendell JT (2006) MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 94:776–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li M, Marin-Muller C, Bharadwaj U et al (2009) MicroRNAs: control and loss of control in human physiology anddisease. World J Surg 33:667–684

    Article  PubMed  PubMed Central  Google Scholar 

  52. Nelson KM, Weiss GJ (2008) MicroRNAs and cancer: past, present, and potential future. Mol Cancer Ther 7:3655–3660

    Article  CAS  PubMed  Google Scholar 

  53. Rachagani S, Kumar S, Batra SK (2010) MicroRNA inpancreatic cancer: pathological, diagnostic and therapeutic implications. Cancer Lett 292:8–16

    Article  CAS  PubMed  Google Scholar 

  54. Farazi TA, Spitzer JI, Morozov P et al (2010) MiRNAs in human cancer. J Pathol 223:102–115

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kalluri Sai Shiva UM, Kuruva MM, Mitnala S, Rupjyoti T, Guduru Venkat R, Botlagunta S, Kandagaddala R, Siddarpuram SP, Sekaran A (2014) MicroRNA profiling in periampullary carcinoma. Pancreatology 14(1):36–47

    Article  CAS  PubMed  Google Scholar 

  56. Schultz NA, Werner J, Willenbrock H, Roslind A, Giese N, Horn T, Demann MWJ, Johansen JS (2012b) MicroRNA expression profiles associated withpancreatic adenocarcinoma and ampullary adenocarcinoma. Mod Pathol 25:1609–1622

    Article  CAS  PubMed  Google Scholar 

  57. Kane MF, Loda M, Gaida GM et al (1997) Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatchrepair–defective human tumor cell lines. Cancer Res 57:808–811

    CAS  PubMed  Google Scholar 

  58. Boland CR (2005) Evolution of the nomenclature for the hereditary colorectal cancer syndromes. Familial Cancer 4:211–218

    Article  PubMed  Google Scholar 

  59. Achille A, Biasi MO, Zamboni G et al (1997) Cancers of the papilla of Vater: mutator phenotype is associated with good prognosis. Clin Cancer Res 3:1841–1847

    CAS  PubMed  Google Scholar 

  60. Ruemmele P, Dietmaier W, Terracciano L et al (2009) Histopathologic features and microsatellite instability of cancers of the papilla of Vater and their precursor lesions. Am J Surg Pathol 33:691–704

    Article  PubMed  Google Scholar 

  61. Alderlieste YA, Rauws EA, Mathus-Vliegen EM, Fockens P, Dekker E (2013) Prospective enteroscopic evaluation of jejunal polyposis in patients with familial adenomatous polyposis and advanced duodenal polyposis. Familial Cancer 12(1):51–56

    Article  CAS  PubMed  Google Scholar 

  62. Cordero-Fernandez C, Garzon-Benavides M, Pizarro-Moreno, Garcia-Lozano R, Marques-Galan JL, Lopez Ruiz T (2009) Gastroduodenal involvement in patients with FAP. Prospective study of nature and evolution of polyps: evaluation of treatment and surveillance methods applied. Eur J Gastroenterol Hepatol 21:1161–1167

    Article  PubMed  Google Scholar 

  63. Basford PJ, Bhandari P (2012) Endoscopic management of nonampullary duodenal polyps. Ther Adv Gastroenterol 5:127–138

    Article  Google Scholar 

  64. Ruo L, Coit DG, Brennan MF, Guillem JG (2002) Long term follow up of patients with familial adenomatous polyposis undergoing pancreaticoduodenal surgery. J Gastrointest Surg 6:671–675

    Article  PubMed  Google Scholar 

  65. Morpugo E, Vitale GC, Galandiuk S, Kimberling J, Ziegler C, Polk HC (2004) Jr :Clinical characteristics of familial adenomatous polyposis and management of duodenal adenomas. J Gastrointest Surg 8:559–564

    Article  Google Scholar 

  66. Brosens LA, Lacobuzio-Donahue CA, Keller JJ, Hustinx SR, Carvalho R et al (2005) Increased cyclooxygenase-2 expression in duodenal compared with colonic tissues in familial adenomatous polyposis and relationship to the -765G->C COX-2 polymorphism. Clin Cancer Res 11(11):4090–4096

    Article  CAS  PubMed  Google Scholar 

  67. Toyooka M, Konishi M, Kikuchi-Yanoshita R, Iwama T, Miyaki M (1995) Somatic mutation of adenomatous polyposis coli gene in gastroduodenal tumours from patients with familial adenomatous polyposis. Cancse Res 55(14):3165–3170

    CAS  Google Scholar 

  68. Bjork J, Akerbant H, Iselius L, Bergman A, Engwall Y, Wahlstrom J et al (2001) Periampullary adenomas and adenocarcinomas in familial adenomatous polyposis. Gastroenterology 121(5):1127–1135

    Article  CAS  PubMed  Google Scholar 

  69. Basile U, Cavallaro G, Polistena A et al (2010) Gastrointestinal and retroperitoneal manifestations of type 1 neurofibromatosis. J Gastrointest Surg 14:186–194

    Article  PubMed  Google Scholar 

  70. Relles D, Back J, Witkiewcz A et al (2010) Periampullary and duodenal neoplasms in neurofibromatosis type 1: two cases and an updated 20 year review of literature yielding 76 cases. J Gastrointest Surg 14:1052–1061

    Article  PubMed  Google Scholar 

  71. Costi R, Caruana P, Sarli L et al (2001) Ampullary adenocarcinoma in neurofibromatosis type 1. Case report and literature review. Mod Pathol 14:1169–1174

    Article  CAS  PubMed  Google Scholar 

  72. Le LQ, Parada LF (2007) Tumour microenvironment and neurofibromatosis type 1: connecting the GAPs. Oncogene 26:4609–4616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kimura W, Futakawa N, Yamagata S, Wada Y, Kuroda A, Muto T, Esaki Y (1994) Different clinicopathologic findings in two histologic types of carcinoma of papilla of Vater. Jpn J Cancer Res 85:161–166

    Article  CAS  PubMed  Google Scholar 

  74. Fischer HP, Zhou H (2004) Pathogenesis of carcinoma of papilla of vater. J Hepabiliary Panreat Surg 11(5):301–309

    Article  Google Scholar 

  75. Paulsen FP, Varoga D, Paulsen AR, Corfield A, Tsokos M (2006) Prognostic value of mucins in the classification of ampullary carcinoma. Hum Pathol 37(2):160–167

    Article  CAS  PubMed  Google Scholar 

  76. Ishimura N, Yamasawa K, Karim Rumi MA, Kadowaki Y, Ishihara S et al (2003) BRAF and K-ras gene mutations in human pancreatic cancers. Cancer Lett 199(2):169–173

    Article  CAS  PubMed  Google Scholar 

  77. Attri J, Srinivasan R, Majumdar S, Radotra BD, Wig J (2005) Alterations of tumor suppressor gene p16 INK4a in pancreatic ductal carcinoma. BMC Gastroenterol 5:22

    Article  PubMed  PubMed Central  Google Scholar 

  78. Iovanna J, Mallmann MC, Gonçalves A, Turrini O, Dagorn JD (2012) Current knowledge on pancreatic cancer. Front Oncol 2:6

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ying H, Dey P, Yao W, Kimmelman AC, Draetta GF et al (2016) Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev 30(4):355–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Troiani T, Martinelli E, Capasso A, Morgillo F, Orditura M, De Vita F, Ciardiello F (2012) Targeting EGFR in pancreatic cancer treatment. Curr Drug Targets 13(6):802–810

    Article  CAS  PubMed  Google Scholar 

  81. Wang Y, Gao J, Li Z, Jin Z, Gong Y, Man X (2007) Diagnostic value of mucins (MUC1, MUC2 and MUC5AC) expression profile in endoscopic ultrasound-guided fine-needle aspiration specimens of the pancreas. Int J Cancer 121:2716–2722

    Article  CAS  PubMed  Google Scholar 

  82. Wang T, Liang YM, Hu P, Cheng YF (2011) Mucins differently expressed in various ampullary adenocarcinomas. Diagn Pathol 6:102. doi:10.1186/1746-1596-6-102

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mallika Tewari.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Funding

No funding was required for this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tewari, M., Swain, J.R., Dixit, V.K. et al. Molecular Aberrations in Periampullary Carcinoma. Indian J Surg Oncol 8, 348–356 (2017). https://doi.org/10.1007/s13193-017-0645-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13193-017-0645-2

Keywords

Navigation