Skip to main content

Advertisement

Log in

Production, pomological and nutraceutical properties of apricot

  • Review Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Apricot (Prunus sp.) is an important fruit crop worldwide. Despite recent advances in apricot research, much is still to be done to improve its productivity and environmental adaptability. The availability of wild apricot germplasms with economically interesting traits is a strong incentive to increase research panels toward improving its economic, environmental and nutritional characteristics. New technologies and genomic studies have generated a large amount of raw data that the mining and exploitation can help decrypt the biology of apricot and enhance its agronomic values. Here, we outline recent findings in relation to apricot production, pomological and nutraceutical properties. In particular, we retrace its origin from central Asia and the path it took to attain Europe and other production areas around the Mediterranean basin while locating it in the rosaceae family and referring to its genetic diversities and new attempts of classification. The production, nutritional, and nutraceutical importance of apricot are recapped in an easy readable and comparable way. We also highlight and discuss the effects of late frost damages on apricot production over different growth stages, from swollen buds to green fruits formation. Issues related to the length of production season and biotic and abiotic environmental challenges are also discussed with future perspective on how to lengthen the production season without compromising the fruit quality and productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Source: http://www.fao.org/faostat/en/#data/QC/visualize Accessed 6 October 2018

Fig. 4

Adapted from (Washington University data): http://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1643&context=extension_curall. Accessed 6 October 2018

Similar content being viewed by others

References

  • Akil M, Kaya A, Ustyol L, Aktar F, Akbayram S (2013) Acute cyanide intoxication due to apricot seed ingestion. J Emerg Med 44(2):e285–e286

    Article  PubMed  Google Scholar 

  • Akin EB, Karabulut I, Topcu A (2008) Some compositional properties of main Malatya apricot (Prunus armeniaca L.) varieties. Food Chem 107(2):939–948

    Article  CAS  Google Scholar 

  • Akpınar A, Koçal H, Ergül A, Kazan K, Şelli M, Bakır M, Aslantaş Ş, Kaymak S, Sarıbaş R (2010) SSR-based molecular analysis of economically important Turkish apricot cultivars. Genet Mol Res 9(1):324–332

    Article  PubMed  CAS  Google Scholar 

  • Al Juhaimi F, Ghafoor K, Özcan MM, Jahurul MHA, Babiker EE, Jinap S, Sahena F, Sharifudin MS, Zaidul ISMJ (2018a) Effect of various food processing and handling methods on preservation of natural antioxidants in fruits and vegetables. J Food Sci Technol 8:9–10. https://doi.org/10.1007/s13197-018-3370-0

    Article  CAS  Google Scholar 

  • Al Juhaimi F, Ozcan MM, Ghafoor K, Babiker EE, Hussain S (2018b) Comparison of cold-pressing and soxhlet extraction systems for bioactive compounds, antioxidant properties, polyphenols, fatty acids and tocopherols in eight nut oils. J Food Sci Technol 55(8):3163–3173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alburquerque N, Burgos L, Egea J (2004) Influence of flower bud density, flower bud drop and fruit set on apricot productivity. Sci Hortic 102(4):397–406

    Article  Google Scholar 

  • Alburquerque N, Faize L, Burgos L (2017) Silencing of Agrobacterium tumefaciens oncogenes ipt and iaaM induces resistance to crown gall disease in plum but not in apricot. Pest Manag Sci 73(10):2163–2173

    Article  CAS  PubMed  Google Scholar 

  • Angmo P, Angmo S, Upadhyay SS, Targais K, Kumar B, Stobdan T (2017) Apricots (Prunus armeniaca L.) of trans-Himalayan Ladakh: potential candidate for fruit quality breeding programs. Sci Hortic 218:187–192

    Article  Google Scholar 

  • Asma BM (2007) Malatya: world’s capital of apricot culture. Chron Hortic 47:20–24

    Google Scholar 

  • Bae H, Yun SK, Yoon IK, Nam EY, Kwon JH, Jun JH (2014) Assessment of organic acid and sugar composition in apricot, plumcot, plum, and peach during fruit development. J Appl Bot Food Qual 87:24–29

    CAS  Google Scholar 

  • Baldicchi A, Farinelli D, Micheli M, Di Vaio C, Moscatello S, Battistelli A, Walker RP, Famiani F (2015) Analysis of seed growth, fruit growth and composition and phospoenolpyruvate carboxykinase (PEPCK) occurrence in apricot (Prunus armeniaca L.). Sci Hortic 186:38–46

    Article  CAS  Google Scholar 

  • Bourguiba H, Khadari B, Krichen L, Trifi-Farah N, Santoni S, Audergon J-M (2010) Grafting versus seed propagated apricot populations: two main gene pools in Tunisia evidenced by SSR markers and model-based Bayesian clustering. Genetica 138(9–10):1023–1032

    Article  PubMed  PubMed Central  Google Scholar 

  • Bourguiba H, Audergon J-M, Krichen L, Trifi-Farah N, Mamouni A, Trabelsi S, D’Onofrio C, Asma BM, Santoni S, Khadari B (2012) Loss of genetic diversity as a signature of apricot domestication and diffusion into the Mediterranean Basin. BMC Plant Biol 12(1):1

    Article  CAS  Google Scholar 

  • Bourguiba H, Khadari B, Krichen L, Trifi-Farah N, Mamouni A, Trabelsi S, Audergon J-M (2013) Genetic relationships between local North African apricot (Prunus armeniaca L.) germplasm and recently introduced varieties. Sci Hortic 152:61–69

    Article  Google Scholar 

  • Çağlayan K, Asma B, Badenes M, Ulubaş Serçe C, Gazel M (2013) Screening for resistance to plum pox virus in some local turkish apricot cultivars and their crosses by molecular markers. In: II International symposium on plum pox virus 1063

  • Cambra M, Capote N, Myrta A, Llácer G (2006) Plum pox virus and the estimated costs associated with sharka disease. EPPO Bull 36(2):202–204

    Article  Google Scholar 

  • Campoy J, Ruiz D, Nortes M, Egea J (2013) Temperature efficiency for dormancy release in apricot varies when applied at different amounts of chill accumulation. Plant Biol 15(s1):28–35

    Article  PubMed  Google Scholar 

  • Costa G, Vizzotto G (2010) Flower and fruit thinning of peach and other Prunus. Hortic Rev 28:351

    Google Scholar 

  • Cross JM (2015) Gene comparison between arabidopsis thaliana, prunus mume and prunus persica. Res J Biol Sci 10(4–5):44–55

    Google Scholar 

  • Drogoudi PD, Vemmos S, Pantelidis G, Petri E, Tzoutzoukou C, Karayiannis I (2008) Physical characters and antioxidant, sugar, and mineral nutrient contents in fruit from 29 apricot (Prunus armeniaca L.) cultivars and hybrids. J Agric Food Chem 56(22):10754–10760

    Article  CAS  PubMed  Google Scholar 

  • Durmaz G, Cam M, Kutlu T, HIşIL Y (2010) Some physical and chemical changes during fruit development of five common apricot (Prunus armeniaca L.) cultivars. Food Sci Technol Res 16(1):71–78

    Article  CAS  Google Scholar 

  • Escalettes VS-L, Hullot C, Wawrzy’nczak D, Mathieu E, Eyquard J-P, Le Gall O, Decroocq V (2006) Plum pox virus induces differential gene expression in the partially resistant stone fruit tree Prunus armeniaca cv. Goldrich. Gene 374:96–103

    Article  CAS  Google Scholar 

  • Faust M, Suranyi D, Nyujto F (1998) Origin and dissemination of apricot. Hortic Rev Westport N Y 22:225–260

    Google Scholar 

  • Fideghelli C, Della Strada G (2010) The breeding activity on apricot in the world from 1980 through today. Acta Hort 862:93–98

    Article  Google Scholar 

  • García-Almodóvar R, Clemente-Moreno M, Díaz-Vivancos P, Petri C, Rubio M, Padilla I, Ilardi V, Burgos L (2015) Greenhouse evaluation confirms in vitro sharka resistance of genetically engineered h-UTR/P1 plum plants. Plant Cell Tissue Org Cult 120(2):791–796

    Article  CAS  Google Scholar 

  • Ghrab M, Mimoun MB, Masmoudi MM, Mechlia NB (2014) Chilling trends in a warm production area and their impact on flowering and fruiting of peach trees. Sci Hortic 178:87–94

    Article  Google Scholar 

  • Goliáš J, Létal J, Dokoupil L, Krška B (2013) Physico-chemical changes and volatile constituents observed in 10 apricot cultivars (Prunus armeniaca L.) during post-harvest ripening. Hortic Sci 40(3):102–110

    Article  Google Scholar 

  • Guillot S, Peytavi L, Bureau S, Boulanger R, Lepoutre J-P, Crouzet J, Schorr-Galindo S (2006) Aroma characterization of various apricot varieties using headspace–solid phase microextraction combined with gas chromatography–mass spectrometry and gas chromatography–olfactometry. Food Chem 96(1):147–155

    Article  CAS  Google Scholar 

  • Guo Y, Li J (2002) Changes of fatty acid composition of membrane lipid, ethylene release and lipoxygenase activity in leaves of apricot under drought stress. J Zhejiang Univ (Agriculture and Life Sciences) 28(5):513–517

    CAS  Google Scholar 

  • Hagen L, Khadari B, Lambert P, Audergon J-M (2002) Genetic diversity in apricot revealed by AFLP markers: species and cultivar comparisons. Theor Appl Genet 105(2–3):298–305

    Article  CAS  PubMed  Google Scholar 

  • Hummer KE, Janick J (2009) Rosaceae: taxonomy, economic importance, genomics. In: Folta KM, Gardiner SE (eds) Genetics and genomics of rosaceae. Plant genetics and genomics: crops and models, vol 6. Springer, New York, NY

  • Ilardi V, Tavazza M (2015) Biotechnological strategies and tools for Plum pox virus resistance: trans-, intra-, cis-genesis, and beyond. Front Plant Sci 6:379

    Article  PubMed  PubMed Central  Google Scholar 

  • İspir A, Toğrul İT (2009) Osmotic dehydration of apricot: kinetics and the effect of process parameters. Chem Eng Res Des 87(2):166–180

    Article  CAS  Google Scholar 

  • Janick J, Moore JN (1996) Fruit breeding, tree and tropical fruits. Wiley, New York

    Google Scholar 

  • Karabulut AB, Karadag N, Gurocak S, Kiran T, Tuzcu M, Sahin K (2014) Apricot attenuates oxidative stress and modulates of Bax, Bcl-2, caspases, NFκ-B, AP-1, CREB expression of rats bearing DMBA-induced liver damage and treated with a combination of radiotherapy. Food Chem Toxicol 70:128–133

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Mishra GP, Singh R, Kumar J, Naik PK, Singh SB (2009) Correspondence of ISSR and RAPD markers for comparative analysis of genetic diversity among different apricot genotypes from cold arid deserts of trans-Himalayas. Physiol Mol Biol Plants 15(3):225–236

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurus M, Ugras M, Ates B, Otlu A (2009) Apricot ameliorates alcohol induced testicular damage in rat model. Food Chem Toxicol 47(10):2666–2672

    Article  CAS  PubMed  Google Scholar 

  • Levy L, Damsteegt V, Scorza R, Kolber M (2000) Plum pox potyvirus disease of stone fruits. American Phytopathological Society. http://www.apsnet.org/online/feature/PlumPox

  • Li M, Zhao Z, Miao XJ (2013) Genetic variability of wild apricot (Prunus armeniaca L.) populations in the Ili Valley as revealed by ISSR markers. Genet Resour Crop Evol 60(8):2293–2302

    Article  CAS  Google Scholar 

  • Minaiyan M, Ghannadi A, Asadi M, Etemad M, Mahzouni P (2014) Anti-inflammatory effect of Prunus armeniaca L. (Apricot) extracts ameliorates TNBS-induced ulcerative colitis in rats. Res Pharm Sci 9(4):225–231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olmstead JW, Iezzoni AF, Whiting MD (2007) Genotypic differences in sweet cherry fruit size are primarily a function of cell number. J Am Soc Hortic Sci 132(5):697–703

    Article  Google Scholar 

  • Pedryc A, Ruthner S, Hermán R, Krska B, Hegedűs A, Halász J (2009) Genetic diversity of apricot revealed by a set of SSR markers from linkage group G1. Sci Hortic 121(1):19–26

    Article  CAS  Google Scholar 

  • Pérez-Pastor A, Ruiz-Sánchez MC, Martínez JA, Nortes PA, Artés F, Domingo R (2007) Effect of deficit irrigation on apricot fruit quality at harvest and during storage. J Sci Food Agric 87(13):2409–2415

    Article  CAS  Google Scholar 

  • Pérez-Pastor A, Domingo R, Torrecillas A, Ruiz-Sánchez MC (2009) Response of apricot trees to deficit irrigation strategies. Irrig Sci 27(3):231–242

    Article  Google Scholar 

  • Petri C, Alburquerque A, Garcéa-Castillo S, Egea J, Burgos L (2004) Factors affecting gene transfer efficiency to apricot leaves during early agrobacterium-mediated transformation steps. J Hortic Sci Biotechnol 79(5):704–712

    Article  CAS  Google Scholar 

  • Petri C, Wang H, Alburquerque N, Faize M, Burgos L (2008) Agrobacterium-mediated transformation of apricot (Prunus armeniaca L.) leaf explants. Plant Cell Rep 27(8):1317–1324

    Article  CAS  PubMed  Google Scholar 

  • Potter D, Eriksson T, Evans RC, Oh S, Smedmark J, Morgan DR, Kerr M, Robertson KR, Arsenault M, Dickinson TA (2007) Phylogeny and classification of Rosaceae. Plant Syst Evol 266(1–2):5–43

    Article  Google Scholar 

  • Raj D, Sharma PC, Sharera SK (2015) Studies on Osmo-air dehydration of different Indian apricot (Prunus armeniaca L.) cultivars. J Food Sci Technol 52(6):3794–3802

    CAS  PubMed  Google Scholar 

  • Ravelonandro M, Scorza R, Michel HJ, Briard P (2014) The efficiency of RNA interference for conferring stable resistance to Plum pox virus. Plant Cell Tissue Org Cult 118(2):347–356

    Article  CAS  Google Scholar 

  • Riva M, Campolongo S, Leva AA, Maestrelli A, Torreggiani D (2005) Structure–property relationships in osmo-air-dehydrated apricot cubes. Food Res Int 38(5):533–542

    Article  Google Scholar 

  • Rubio M, Ruiz D, Egea J, Martínez-Gómez P, Dicenta F (2014) Opportunities of marker-assisted selection for Plum pox virus resistance in apricot breeding programs. Tree Genet Genom 10(3):513–525

    Article  Google Scholar 

  • Ruiz D, Egea J (2008) Analysis of the variability and correlations of floral biology factors affecting fruit set in apricot in a Mediterranean climate. Sci Hortic 115(2):154–163

    Article  Google Scholar 

  • Ruiz D, Egea J, Gil MI, Tomás-Barberán FA (2005a) Characterization and quantitation of phenolic compounds in new apricot (Prunus armeniaca L.) varieties. J Agric Food Chem 53(24):9544–9552

    Article  CAS  PubMed  Google Scholar 

  • Ruiz D, Egea J, Tomás-Barberán FA, Gil MI (2005b) Carotenoids from new apricot (Prunus armeniaca L.) varieties and their relationship with flesh and skin color. J Agric Food Chem 53(16):6368–6374

    Article  CAS  PubMed  Google Scholar 

  • Ruiz D, Campoy JA, Egea J (2007) Chilling and heat requirements of apricot cultivars for flowering. Environ Exp Bot 61(3):254–263

    Article  Google Scholar 

  • Ruiz-Sanchez MC, Domingo R, Torrecillas A, Perez-Pastor A (2000) Water stress preconditioning to improve drought resistance in young apricot plants. Plant Sci 156(2):245–251

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Sánchez MC, Domingo R, Pérez-Pastor A (2007) Daily variations in water relations of apricot trees under different irrigation regimes. Biol Plant 51(4):735–740

    Article  Google Scholar 

  • Scorzal R, May LG, Purnell B, Upchurch B (1991) Differences in number and area of mesocarp cells between small-and large-fruited peach cultivars. J Am Soc Hortic Sci 116(5):861–864

    Article  Google Scholar 

  • Senthilkumaran S, Menezes RG, Jayaraman S, Thirumalaikolundusubramanian P (2015) Acute cyanide intoxication due to apricot seeds: Is “evidence” countable? J Emerg Med 48(1):82–83

    Article  PubMed  Google Scholar 

  • Sharma PC, Tilakratne BM, Gupta A (2010) Utilization of wild apricot kernel press cake for extraction of protein isolate. J Food Sci Technol 47(6):682–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi S, Li J, Sun J, Yu J, Zhou S (2013) Phylogeny and classification of Prunus sensu lato (Rosaceae). J Integr Plant Biol 55(11):1069–1079

    Article  CAS  PubMed  Google Scholar 

  • Shin H, Oh Y, Kim D (2015) Differences in cold hardiness, carbohydrates, dehydrins and related gene expressions under an experimental deacclimation and reacclimation in Prunus persica. Physiol Plant 154(4):485–499

    Article  CAS  PubMed  Google Scholar 

  • Somogyi L, Barrett DM, Hui YH (1996) Processing fruits. CRC Press, Boca Raton

    Google Scholar 

  • Stushnoff C, Remmele RL, Essensee V, McNeil M (1993) Low temperature induced biochemical mechanisms: implications for cold acclimation and de-acclimation. In: Jackson MB, Black CR (eds) Interacting stresses on plants in a changing climate. Springer, Berlin, pp 647–657

    Chapter  Google Scholar 

  • Szymajda M, Pruski K, Żurawicz E, Sitarek M (2013) Freezing injuries to flower buds and their influence on yield of apricot (Prunus armeniaca L.) and peach (Prunus persica L.). Can J Plant Sci 93(2):191–198

    Article  Google Scholar 

  • Tian H, Yan H, Tan S, Zhan P, Mao X, Wang P, Wang Z (2016) Apricot kernel oil ameliorates cyclophosphamide-associated immunosuppression in rats. Lipids 51(8):931–939

    Article  CAS  PubMed  Google Scholar 

  • Vavilov NI (1951) The origin, variation, immunity and breeding of cultivated plants. Soil Sci 72(6):482

    Article  Google Scholar 

  • Wani SM, Masoodi FA, Ahmad M, Mir SA (2018) Processing and storage of apricots: effect on physicochemical and antioxidant properties. Journal of food science and technology 55:4505

    Article  CAS  PubMed  Google Scholar 

  • Webster AD, Spencer JE (2000) Fruit thinning plums and apricots. Plant Growth Regul 31(1):101–112

    Article  CAS  Google Scholar 

  • Yamaguchi M, Haji T, Yaegaki H (2004) Differences in mesocarp cell number, cell length and occurrence of gumming in fruit of Japanese apricot (Prunus mume Sieb. et Zucc.) cultivars during their development. J Jpn Soc Hortic Sci 73(3):200–207

    Article  Google Scholar 

  • Yamane H (2014) Regulation of bud dormancy and bud break in Japanese apricot (Prunus mume Siebold & Zucc.) and peach [Prunus persica (L.) Batsch]: a summary of recent studies. J Jpn Soc Hortic Sci 83:187–202

    Article  CAS  Google Scholar 

  • Yamshanov VA, Kovan’ko EG, Pustovalov YI (2016) Effects of amygdaline from apricot kernel on transplanted tumors in mice. Bull Exp Biol Med 160(5):712–714

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz KU, Gurcan K (2012) Genetic diversity in apricot. In: Genetic diversity in plants. InTech, pp 249–270

  • Yilmaz I, Karaman A, Vardi N, Cetin A, Erdemli E (2013) Effects of organic apricot on liver regeneration after partial hepatectomy in rats. Transplant Proc 45(6):2455–2460

    Article  CAS  PubMed  Google Scholar 

  • Yılmaz KU, Ercişli S, Asma BM, Doğan Y, Kafkas S (2009) Genetic relatedness in Prunus genus revealed by inter-simple sequence repeat markers. HortScience 44(2):293–297

    Article  Google Scholar 

  • Yoshida M (1998) Classification of apricot varieties by RAPD analysis. J Jpn Soc Hort Sci 67:2127

    Google Scholar 

  • Zhang Q-P, Liu D-C, Liu S, Liu N, Wei X, Zhang A-M, Liu W-S (2014) Genetic diversity and relationships of common apricot (Prunus armeniaca L.) in China based on simple sequence repeat (SSR) markers. Genet Resour Crop Evol 61(2):357–368

    Article  CAS  Google Scholar 

  • Zhong W, Gao Z, Zhuang W, Shi T, Zhang Z, Ni Z (2013) Genome-wide expression profiles of seasonal bud dormancy at four critical stages in Japanese apricot. Plant Mol Biol 83(3):247–264

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Moustafa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moustafa, K., Cross, J. Production, pomological and nutraceutical properties of apricot. J Food Sci Technol 56, 12–23 (2019). https://doi.org/10.1007/s13197-018-3481-7

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-018-3481-7

Keywords

Navigation