Skip to main content

Advertisement

Log in

How does organic farming shape the soil- and plant-associated microbiota?

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Intensive agricultural practices have led to a decline in soil health, thereby affecting environmental sustainability. To feed the ever-increasing global population in a sustainable manner, shifting to eco-friendly agricultural practices is of paramount importance. In this respect organic farming, which excludes chemicals, has been widely popularised. However, the effect of such an intervention on microbial communities that are the major drivers of soil processes, is yet to be conclusively determined. Such an understanding is important for the maintenance of soil health and improvisations for enhancing the efficiency of the practice. A general belief is that organic farming results in a more diverse microbiota. But the information available is inconsistent and fragmented. Besides, limited efforts have been made to link the structure of microbial communities to soil functionality. The review is an attempt to critically re-look into the decade-old question of how organic farming shapes the microbial diversity of arable land, as well as the diversity of plant-associated microbial communities, especially in light of the popularization of the technique of next generation sequencing. Based on the available knowledge, the review aims to pave the way for future studies in the area by identifying the research gaps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  • Allard SM, Walsh CS, Wallis AE, Ottesen AR, Brown EW, Micallef SA (2016) Solanum lycopersicum (tomato) hosts robust phyllosphere and rhizosphere bacterial communities when grown in soil amended with various organic and synthetic fertilizers. Sci Total Environ 573:555–563

    Article  CAS  PubMed  Google Scholar 

  • Armalytė J, Skerniškytė J, Bakienė E, Krasauskas R, Šiugždinienė R, Kareivienė V, Kerzienė S, Klimienė I, Sužiedėlienė E, Ružauskas M (2019) Microbial diversity and antimicrobial resistance profile in microbiota from soils of conventional and organic farming systems. Front Microbiol 10:892

    Article  PubMed  PubMed Central  Google Scholar 

  • Bansal M, Mukherji KG (1996) Root exudation in rhizosphere biology. In: Mukherji KG, Singh VP (eds) Concepts in applied microbiology and biotechnology. Aditya Books, New Delhi, pp 97–119

    Google Scholar 

  • Bashir O, Khan K, Hakeem KR, Mir NA, Rather GH, Mohiuddin R (2016) Soil microbe diversity and root exudates as important aspects of rhizosphere ecosystem. In: Hakeem KR, Akhtar MS (eds) Plant, soil and microbes, Volume 2, Mechanisms and molecular interactions. Springer, Switzerland, pp 337–357

    Chapter  Google Scholar 

  • Bebber DP, Richards VRA (n.d.) Meta-analysis of the effect of organic and mineral fertilizers on soil microbial diversity. bioRxiv. https://doi.org/10.1101/2020.10.04.325373

  • Bettiol W, Ghini R, Galvão JAH, Siloto RC (2004) Organic and conventional tomato cropping systems. Sci Agric 61:253–259

    Article  Google Scholar 

  • Bonanomi G, Antignani V, Pane C, Scala F (2007) Suppression of soilborne fungal diseases with organic amendments. J Plant Pathol 5:311–324

    Google Scholar 

  • Bonanomi G, Lorito M, Vinale F, Woo SL (2018) Organic amendments, beneficial microbes, and soil microbiota: toward a unified framework for disease suppression. Annu Rev Phytopathol 56:1–20

    Article  CAS  PubMed  Google Scholar 

  • Bongiorno G, Postma J, Bünemann EK, Brussaard L, de Goede RGM, Mäder P, Tamm L, Thuerig B (2019) Soil suppressiveness to Pythium ultimum in ten European long-term field experiments and its relation with soil parameters. Soil Biol Biochem 133:174–187

    Article  CAS  Google Scholar 

  • Bonilla N, Gutiérrez-Barranquero JA, Vicente AD, Cazorla FM (2012) Enhancing soil quality and plant health through suppressive organic amendments. Diversity 4:475–491

    Article  Google Scholar 

  • Carvalho CR, Dias AC, Homma SK, Cardoso EJ (2020) Phyllosphere bacterial assembly in citrus crop under conventional and ecological management. PeerJ 8:e9152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Castañeda LE, Miura T, Sánchez R, Barbosa O (2018) Effects of agricultural management on phyllosphere fungal diversity in vineyards and the association with adjacent native forests. PeerJ 6:e5715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chaudhry V, Rehman A, Mishra A, Chauhan PS, Nautiyal CS (2012) Changes in bacterial community structure of agricultural land due to long-term organic and chemical amendments. Microb Ecol 64:450–460

    Article  PubMed  Google Scholar 

  • Delgado-Baquerizo M, Maestre F, Reich P et al (2016) Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun 7:10541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dennert F, Imperiali N, Staub C, Schneider J, Laessle T, Zhang T, Wittwer R, van der Heijden MGA, Smits THM, Schlaeppi K, Keel C, Maurhofer M (2018) Conservation tillage and organic farming induce minor variations in Pseudomonas abundance, their antimicrobial function and soil disease resistance. FEMS Microbiol Ecol 94:fiy075

    Article  CAS  Google Scholar 

  • Dong CJ, Wang LL, Li Q, Shang QM (2019) Bacterial communities in the rhizosphere, phyllosphere and endosphere of tomato plants. PLoS One 14:e0223847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enebe MC, Babalola OO (2020) Effects of inorganic and organic treatments on the microbial community of maize rhizosphere by a shotgun metagenomics approach. Ann Microbiol 70:49

    Article  CAS  Google Scholar 

  • Esperschuetz J, Gattinger A, Mader P, Schloter M, Fliessbach A (2007) Response of soil microbial biomass and community structures to conventional and organic farming systems under identical crop rotations. FEMS Microbiol Ecol 61:26–37

    Article  CAS  Google Scholar 

  • Fernandez AL, Sheaffer CC, Wyse DL, Sadowsky MJ (2020) Bacterial community composition in agricultural soils under long-term organic and conventional management Agrosystems. Geosci Environ 3:e20063

    Google Scholar 

  • Francioli D, Schulz E, Lentendu G, Wubet T, Buscot F, Reitz T (2016) Mineral vs. organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Frontiers in. Microbiology 7:1446

    Google Scholar 

  • Galazka A, Grzeda E, Joncyzk K (2019) Changes of microbial diversity in rhizosphere soils of new quality varieties of winter wheat cultivation in organic farming. Sustainability 11:1–20

    Article  CAS  Google Scholar 

  • Gardner T, Acosta-Martinez V, Senwo Z, Dowd SE (2011) Soil rhizosphere microbial communities and enzyme activities under organic farming in Alabama. Diversity 3:308–328

    Article  CAS  Google Scholar 

  • Gupta MM, Aggarwal A (2018) From mycorrhizosphere to rhizosphere microbiome: the paradigm shift. In: Giri B, Parasad R, Varma A (eds) Root biology. Springer, Cham, pp 487–500

    Chapter  Google Scholar 

  • Harkes P, Suleiman AKA, van den Elsen SJJ, de Haan JJ, Holterman M, Kuramae EE, Helder J (2019) Conventional and organic soil management as divergent drivers of resident and active fractions of major soil food web constituents. Sci Rep 9:13521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hartmann M, Frey B, Mayer J, Mäder P, Widmer F (2015) Distinct soil microbial diversity under long-term organic and conventional farming. ISME J 9:1177–1194

    Article  PubMed  Google Scholar 

  • Hayden HL, Rochfort SJ, Ezernieks V, Savin KW, Mele PM (2019) Metabolomics approaches for the discrimination of disease suppressive soils for Rhizoctonia solani AG8 in cereal crops using 1H NMR and LC-MS. Sci Total Environ 651:1627–1638

    Article  CAS  PubMed  Google Scholar 

  • Hole DG, Perkins AJ, Wilson JD, Alexander IH, Grice PV, Evans AD (2005) Does organic farming benefit biodiversity? Biol Conserv 122:113–130

    Article  Google Scholar 

  • Jangid K, Williams MA, Franzluebbers AJ, Sanderlin JS, Reeves JH, Jenkins MB, Endale DM, Coleman DC, Whitman WB (2008) Relative impacts of land-use, management intensity and fertilization upon soil microbial community structure in agricultural systems. Soil Biol Biochem 40:2843–2853

    Article  CAS  Google Scholar 

  • Joshi D, Hooda KS, Bhatt JC, Mina BL, Gupta HS (2009) Suppressive effects of composts on soil-borne and foliar diseases of French bean in the field in the western Indian Himalayas. Crop Prot 28:608–615

    Article  Google Scholar 

  • Karanja EN, Fliessbach A, Adamtey N, Kambura AK, Musyoka M, Fiaboe K, Mwirichia R (2020) Diversity and structure of prokaryotic communities within organic and conventional farming systems in central highlands of Kenya. PLoS One 15:e0236574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlsson I, Friberg H, Kolseth AK, Steinberg C, Persson P (2017) Organic farming increases richness of fungal taxa in the wheat phyllosphere. Mol Ecol 26:3424–3436

    Article  CAS  PubMed  Google Scholar 

  • Lenc L, Kwasna H, Sadowski C, Grabowski A (2014) Microbiota in wheat roots, rhizosphere and soil in crops grown in organic and other production systems. J Phytopathol 163:245–263

    Article  CAS  Google Scholar 

  • Li H, Cai X, Gong J, Xu T, Ding GC, Li J (2019) Long-term organic farming manipulated rhizospheric microbiome and Bacillus antagonism against pepper blight (Phytophthora capsici). Front Microbiol 10:342

    Article  PubMed  PubMed Central  Google Scholar 

  • Li R, Pang Z, Zhou Y, Fallah N, Hu C, Lin W, Yuan Z (2020) Metagenomic analysis exploring taxanomic and functional diversity of soil microbial communities in sugarcane fields applied with organic fertilizer. Biomed Res Int 2020:9381506

    PubMed  PubMed Central  Google Scholar 

  • Liao J, Liang Y, Huang D (2018) Organic farming improves soil microbial abundance and diversity under greenhouse condition: a case study in Shanghai (eastern China). Sustainability 10:3825

    Article  CAS  Google Scholar 

  • Likar M, Stres B, Rusjan D, Potisek M, Regvar M (2017) Ecological and conventional viticulture gives rise to distinct fungal and bacterial microbial communities in vineyard soils. Appl Soil Ecol 113:86–95

    Article  Google Scholar 

  • Lori M, Symnaczik S, Mäder P, De Deyn G, Gattinger A (2017) Organic farming enhances soil microbial abundance and activity—a metaanalysis and meta-regression. PLoS One 12:e0180442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu H, Chang YH, Wu BY (2020) The compare organic farm and conventional farm to improve sustainable agriculture, ecosystems, and environment. Org Agric 10:409–418

    Article  Google Scholar 

  • Lupatini M, Korthals GW, de Hollander M, Janssens TKS, Kuramae EE (2017) Soil microbiome is more heterogeneous in organic than in conventional farming system. Front Microbiol 7:2064

    Article  PubMed  PubMed Central  Google Scholar 

  • Mäder P, Fließbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697

    Article  PubMed  Google Scholar 

  • Morrison-Whittle P, Lee SA, Goddard MR (2017) Fungal communities are differentially affected by conventional and biodynamic agricultural management approaches in vineyard ecosystems. Agric Ecosyst Environ 246:306–313

    Article  Google Scholar 

  • Pancher M, Ceol M, Corneo PE, Longa CMO, Yousaf S, Pertot I, Campisano A (2012) Fungal Endophytic Communities in Grapevines (Vitis vinifera L.) Respond to Crop Management. Appl Environ Microbiol 78:4308–4317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul Chowdhury S, Babin D, Sandmann M, Jacquiod S, Sommermann L, Sørensen SJ, Fliessbach A, Mäder P, Geistlinger J, Smalla K, Rothballer M, Grosch R (2019) Effect of long-term organic and mineral fertilization strategies on rhizosphere microbiota assemblage and performance of lettuce. Environ Microbiol 21:2426–2439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penton CR, Gupta VVSR, Tiedje JM, Neate SM, Ophel-Keller K, Gillings M, Harvey P, Pham A, Roget DK (2014) Fungal community structure in disease suppressive soils assessed by 28S LSU gene sequencing. PLoS One 9:e93893

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pérez-Piqueres A, Edel-Hermann V, Alabouvette C, Steinberg C (2006) Response of soil microbial communities to compost amendments. Soil Biol Biochem 38:460–470

    Article  CAS  Google Scholar 

  • Postma J, Schilder MT, Bloem J, van Leeuwen-Haagsma WK (2008) Soil suppressiveness and functional diversity of the soil microflora in organic farming systems. Soil Biol Biochem 40:2394–2406

    Article  CAS  Google Scholar 

  • Raaijmakers J (2015) The minimal rhizosphere microbiome. In: Lugtenberg B (ed) Principles of plant-microbe interactions. Springer, Cham, pp 411–417

    Chapter  Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    Article  CAS  Google Scholar 

  • Schmid F, Moser G, Müller H, Berg G (2011) Functional and structural microbial diversity in organic and conventional viticulture: organic farming benefits natural biocontrol agents. Appl Environ Microbiol 77:2188–2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt JE, Bowles TM, Gaudin ACM (2016) Using ancient traits to convert soil health into crop yield: impact of selection on maize root and rhizosphere function. Front Plant Sci 7:373. https://doi.org/10.3389/fpls.2016.00373

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt JE, Kent AD, Brisson VL, Gaudin ACM (2019) Agricultural management and plant selection interactively affect rhizosphere microbial community structure and nitrogen cycling. Microbiome 7:146

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh U, Choudhary AK, Sharma S (2020) Comparative performance of conservation agriculture Vis-a-Vis organic and conventional farming, in enhancing plant attributes and rhizospheric bacterial diversity in Cajanus cajan: a field study. Eur J Soil Biol 99:103197

    Article  CAS  Google Scholar 

  • Skinner C, Gattinger A, Krauss M, Krause HM, Mayer J, van der Heijden MGA, Mäder P (2019) The impact of long-term organic farming on soil-derived greenhouse gas emissions. Sci Rep 9:1702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stein-Bachinger K, Gottwald F, Haub A, Schmidt E (2020) To what extent does organic farming promote species richness and abundance in temperate climates? A review. Org Agric. https://doi.org/10.1007/s13165-020-00279-2

  • Sugiyama A, Vivanco JM, Jayanty SS, Manter DK (2010) Pyrosequencing assessment of soil microbial communities in organic and conventional potato farms. Plant Dis 94:1329–1335

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Xun WB, Huang T, Zhang GS, Gao JS, Ran W, Li D, Shen Q, Zhang R (2016) Alteration of the soil bacterial community during parent material maturation driven by different fertilization treatments. Soil Biol Biochem 96:207–215

    Article  CAS  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  CAS  PubMed  Google Scholar 

  • Tully KL, McAskill C (2020) Promoting soil health in organically managed systems: a review. Org Agric 10:339–358

    Article  Google Scholar 

  • Varanda CMR, Oliveira M, Materatski P, Landum M, Clara MIE, Do Rosário Félix M (2016) Fungal endophytic communities associated to the phyllosphere of grapevine cultivars under different types of management. Fungal Biol 120:1525–1536

    Article  PubMed  Google Scholar 

  • Verbruggen E, Röling WF, Gamper HA, Kowalchuk GA, Verhoef HA, van der Heijden MG (2010) Positive effects of organic farming on below-ground mutualists: large-scale comparison of mycorrhizal fungal communities in agricultural soils. New Phytol 186:968–979

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Wang H, Feng Y, Wang L, Xiao X, Xi Y, Luo X, Sun R, Ye X, Huang Y, Zhang Z, Cui Z (2016) Consistent responses of the microbial community structure to organic farming along the middle and lower reaches of the Yangtze River. Sci Rep 6:35046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams DM, Blanco-Canqui H, Francis CA, Galusha TD (2017) Organic farming and soil physical properties: an assessment after 40 years. Agron J 109:600–609

    Article  Google Scholar 

  • Xia Y, Sahib MR, Amna A, Opiyo SO, Zhao Z, Gao YG (2019) Culturable endophytic fungal communities associated with plants in organic and conventional farming systems and their effects on plant growth. Sci Rep 9:1669

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiang Q, Chen QL, Zhu D, Yang XR, Qiao M, Hu HW, Zhu YG (2020) Microbial functional traits in phyllosphere are more sensitive to anthropogenic disturbance than in soil. Environ Pollut 265:114954

    Article  CAS  PubMed  Google Scholar 

  • Xun W, Li W, Huang T, Ren Y, Xiong W, Miao Y, Ran W, Li D, Shen Q, Zhang R (2018) Long-term agronomic practices alter the composition of asymbiotic diazotrophic bacterial community and their nitrogen fixation genes in an acidic red soil. Biol Fertil Soils 54:329–339

    Article  CAS  Google Scholar 

  • Yogev A, Laor Y, Katan J, Hadar Y, Cohen R, Medina S, Raviv M (2011) Does organic farming increase soil suppression against Fusarium wilt of melon? Org Agric 1:203–216

    Article  Google Scholar 

  • Zhang X, Kuzyakov Y, Zang H, Dippold MA, Shi L, Spielvogel S, Razavi BS (2020) Rhizosphere hotspots: root hairs and warming control microbial efficiency, carbon utilization and energy production. Soil Biol Biochem 148:107872

    Article  CAS  Google Scholar 

  • Zhu B, Chen Q, Chen S, Zhu YG (2017) Does organically produced lettuce harbor higher abundance of antibiotic resistance genes than conventionally produced? Environ Int 98:152–159

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was funded by a grant received from the Department of Biotechnology, Government of India (BT/PR27680/BCE/8/1434/2018). SK wishes to acknowledge the fellowship awarded by University Grants Commission, India.

Author information

Authors and Affiliations

Authors

Contributions

SS conceptualized the idea, SK and SS wrote the manuscript.

Corresponding author

Correspondence to Shilpi Sharma.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatri, S., Sharma, S. How does organic farming shape the soil- and plant-associated microbiota?. Symbiosis 84, 391–398 (2021). https://doi.org/10.1007/s13199-021-00767-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-021-00767-3

Keywords

Navigation