Skip to main content
Log in

Characterization of a protocatechuate catabolic gene cluster in Rhodococcus ruber OA1 involved in naphthalene degradation

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

In this study, we investigated a protocatechuate catabolic gene cluster involved in naphthalene degradation in Rhodococcus ruber OA1. Rhodococcus ruber OA1 was isolated from the pharmaceutical wastewater treatment plant of Xinhua Pharmaceutical Co., Ltd. (Zibo, China). Substrate utilization tests showed that OA1 utilizes naphthalene, phenol, benzoate, salicylate, and protocatechuate as the sole carbon and energy sources for growth. A degradation assay revealed that phthalate is an intermediate in naphthalene degradation and that the protocatechuate pathway plays an important role in naphthalene degradation. To determine the genetic basis and regulation of protocatechuate catabolism in OA1, a fosmid genomic library was constructed and a positive clone carrying the protocatechuate degradation gene cluster was isolated. Sequencing and a bioinformatics analysis identified the complete gene cluster, pcaJIGHBARC, responsible for protocatechuate degradation. Based on this gene cluster, the genes pcaGH (encoding the α and β subunits of protocatechuate 3,4-dioxygenase, 3,4-PCD) were coexpressed and the expressed products showed 3,4-PCD activity. This study illustrates a potential pathway of naphthalene degradation and identifies a protocatechuate pathway in Rhodococcus ruber OA1 for the first time, thus extending our understanding of polycyclic aromatic hydrocarbon degradation and the related aromatic compounds degraded in the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahn Y, Sanseverino J, Sayler GS (1999) Analyses of polycyclic aromatic hydrocarbon-degrading bacteria isolated from contaminated soils. Biodegradation 10:149–157

    Article  CAS  PubMed  Google Scholar 

  • Annweiler E, Richnow HH, Antranikian G, Hebenbrock S, Garms C, Franke S, Francke W, Michaelis W (2000) Naphthalene degradation and incorporation of naphthalene-derived carbon into biomass by the thermophile Bacillus thermoleovorans. Appl Environ Microbiol 66:518–523

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arciero DM, Lipscomb JD, Huynh BH, Kent TA, Münck E (1983) EPR and Mössbauer studies of protocatechuate 4, 5-dioxygenase. Characterization of a new Fe 2+ environment. J Biol Chem 258:1498l–14991

    Google Scholar 

  • Auffret M, Labbe D, Thouand G, Greer CW, Fayolle-Guichard F (2009) Degradation of a mixture of hydrocarbons, gasoline, and diesel oil additives by Rhodococcus aetherivorans and Rhodococcus wratislaviensis. Appl Environ Microbiol 75:7774–7782

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Braun F, Hamelin J, Bonnafous A, Delgenès N, Steyer JP, Patureau D (2015) Similar PAH fate in anaerobic digesters inoculated with three microbial communities accumulating either volatile fatty acids or methane. PLoS ONE 10, e0125552

    Article  PubMed Central  PubMed  Google Scholar 

  • Burchiel SW, Luster MI (2001) Signaling by environmental polycyclic aromatic hydrocarbons in human lymphocytes. Clin Immunol 98:2–10

    Article  CAS  PubMed  Google Scholar 

  • Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368

    Article  CAS  Google Scholar 

  • Dagley S, Geary PJ, Wood JM (1968) The metabolism of protocatechuate by Pseudomonas testosteroni. Biochem J 109:559–568

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dastgheib SM, Amoozegar MA, Khajeh K, Ventosa A (2011) A halotolerant Alcanivorax sp. strain with potential application in saline soil remediation. Appl Microbiol Biotechnol 90:305–312

    Article  CAS  PubMed  Google Scholar 

  • Dastgheib SM, Amoozegar MA, Khajeh K, Shavandi M, Ventosa A (2012) Biodegradation of polycyclic aromatic hydrocarbons by a halophilic microbial consortium. Appl Microbiol Biotechnol 95:789–798

    Article  CAS  PubMed  Google Scholar 

  • Daye KJ, Groff JC, Kirpekar AC, Mazumder R (2003) High efficiency degradation of tetrahydrofuran (THF) using a membrane bioreactor: identification of THF-degrading cultures of Pseudonocardia sp. strain M1 and Rhodococcus ruber isolate M2. J Ind Microbiol Biotechnol 30:705–714

    Article  CAS  PubMed  Google Scholar 

  • Derz K, Klinner U, Schuphan I, Stackebrandt E, Kroppenstedt RM (2004) Mycobacterium pyrenivorans sp. nov., a novel polycyclic-aromatic-hydrocarbon-degrading species. Int J Syst Evol Microbiol 54:2313–2317

    Article  CAS  PubMed  Google Scholar 

  • Dorn E, Knackmuss HJ (1978) Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of catechol. Biochem J 174:85–94

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guzik U, Hupert-Kocurek K, Sałek K, Wojcieszyńska D (2013) Influence of metal ions on bioremediation activity of protocatechuate 3,4-dioxygenase from Stenotrophomonas maltophilia KB2. World J Microbiol Biotechnol 29:267–273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guzik U, Hupert-Kocurek K, Krysiak M, Wojcieszyńska D (2014) Degradation potential of protocatechuate 3,4-dioxygenase from crude extract of Stenotrophomonas maltophilia strain KB2 immobilized in calcium alginate hydrogels and on glyoxyl agarose. Biomed Res Int 2014:138768

  • Habe H, Omori T (2003) Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci Biotechnol Biochem 67:225–243

    Article  CAS  PubMed  Google Scholar 

  • Haritash AK, Kaushik CPJ (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15

    Article  CAS  PubMed  Google Scholar 

  • Hedlund BP, Geiselbrecht AD, Bair TJ, Staley JT (1999) Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas naphthovorans gen. nov., sp. nov. Appl Environ Microbiol 65:251–259

    PubMed Central  CAS  PubMed  Google Scholar 

  • Heitkamp MA, Freeman JP, Miller DW, Cerniglia CE (1988) Pyrene degradation by a Mycobacterium sp.: identification of ring oxidation and ring fission products. Appl Environ Microbiol 54:2556–2565

    PubMed Central  CAS  PubMed  Google Scholar 

  • Iwabuchi T, Harayama S (1997) Biochemical and genetic characterization of 2-carboxybenzaldehyde dehydrogenase, an enzyme involved in phenanthrene degradation by Nocardioides sp. strain KP7. J Bacteriol 179:6488–6494

    PubMed Central  CAS  PubMed  Google Scholar 

  • Iwabuchi T, Harayama S (1998) Biochemical and molecular characterization of 1-hydroxy-2-naphthoate dioxygenase from Nocardioides sp. KP7. J Biol Chem 273:8332–8336

    Article  CAS  PubMed  Google Scholar 

  • Iwabuchi T, Inomata-Yamoguchi Y, Katsuta A, Harayama S (1998) Isolation and characterization of marine Nocardioides capable of growing and degrading phenanthrene at 42°C. J Mar Biotechnol 6:86–90

    CAS  Google Scholar 

  • Jackson BE, Bhupathiraju VK, Tanner RS, Woese CR, McInerney MJ (1999) Syntrophus aciditrophicus sp. nov., a new anaerobic bacterium that degrades fatty acids and benzoate in syntrophic association with hydrogen-using microorganisms. Arch Microbiol 171:107–114

  • Jones MD, Crandell DW, Singleton DR, Aitken MD (2011) Stable-isotope probing of the polycyclic aromatic hydrocarbon-degrading bacterial guild in a contaminated soil. Environ Microbiol 13:2623–2632

    Article  CAS  PubMed  Google Scholar 

  • Kanaly RA, Harayama S (2010) Advances in the field of high-molecular-weight polycyclic aromatic hydrocarbon biodegradation by bacteria. Microb Biotechnol 3:136–164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kauppi B, Lee K, Carredano E, Parales RE, Gibson DT (1998) Structure of an aromatic ring-hydroxylating dioxygenase naphthalene 1,2-dioxygenase. Structure 6:571–586

    Article  CAS  PubMed  Google Scholar 

  • Khan AA, Wang RF, Cao WW, Doerge DR, Wennerstrom D, Cerniglia CE (2001) Molecular cloning, nucleotide sequence, and expression of genes encoding a polycyclic aromatic ring dioxygenase from Mycobacterium sp. strain PYR-1. Appl Environ Microbiol 67:3577–3585

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim SJ, Kweon O, Jones RC, Edmondson RD, Cerniglia CE (2008) Genomic analysis of polycyclic aromatic hydrocarbon degradation in Mycobacterium vanbaalenii PYR-1. Biodegradation 19:859–881

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Lee CH, Choi JN, Choi KY, Zylstra GJ, Kim E (2010) Aromatic hydroxylation of indan by o-xylene-degrading Rhodococcus sp. strain DK17. Appl Environ Microbiol 76:375–377

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim D, Yoo M, Choi KY, Kang BS, Kim TK, Hong SG, Zylstra GJ, Kim E (2011) Differential degradation of bicyclics with aromatic and alicyclic rings by Rhodococcus sp. strain DK17. Appl Environ Microbiol 77:8280–8287

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kitagawa W, Miyauchi K, Masai E, Fukuda M (2001) Cloning and characterization of benzoate catabolic genes in the Gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1. J Bacteriol 183:6598–6606

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kiyohara H, Torigoe S, Kaida N, Asaki T, Iida T, Hayashi H, Takizawa N (1994) Cloning and characterization of a chromosomal gene cluster, pah, that encodes the upper pathway for phenanthrene and naphthalene utilization by Pseudomonas putida OUS82. J Bacteriol 176:2439–2443

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kulakov LA, Chen S, Allen CC, Larkin MJ (2005) Web-type evolution of Rhodococcus gene clusters associated with utilization of naphthalene. Appl Environ Microbiol 71:1754–1764

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kulakova AN, Reid KA, Larkin MJ, Allen CC, Kulakov LA (1996) Isolation of Rhodococcus rhodochrous NCIMB13064 derivatives with new biodegradative abilities. FEMS Microbiol Lett 145:227–231

    Article  CAS  PubMed  Google Scholar 

  • Kweon O, Kim SJ, Jones RC, Freeman JP, Adjei MD, Edmondson RD, Cerniglia CE (2007) A polyomic approach to elucidate the fluoranthene-degradative pathway in Mycobacterium vanbaalenii PYR- 1. J Bacteriol 189:4635–4647

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kweon O, Kim SJ, Holland RD, Chen H, Kim DW, Gao Y, Yu LR, Baek S, Baek DH, Ahn H, Cerniglia CE (2011) Polycyclic aromatic hydrocarbon metabolic network in Mycobacterium vanbaalenii PYR-1. J Bacteriol 193:4326–4337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Larkin MJ, Allen CC, Kulakov LA, Lipscomb DA (1999) Purification and characterization of a novel naphthalene dioxygenase from Rhodococcus sp. strain NCIMB12038. J Bacteriol 181:6200–6204

    PubMed Central  CAS  PubMed  Google Scholar 

  • Laurie AD, Lloyd-Jones G (1999) The phn genes of Burkholderia sp. strain RP007 constitute a divergent gene cluster for polycyclic aromatic hydrocarbon catabolism. J Bacteriol 181:531–540

  • Lehner K, Santarelli F, Vasold R, Penning R, Sidoroff A, König B, Landthaler M, Bäumler W (2014) Black tattoos entail substantial uptake of genotoxic polycyclic aromatic hydrocarbons (PAH) in human skin and regional lymph nodes. PLoS ONE 9, e92787

    Article  PubMed Central  PubMed  Google Scholar 

  • Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  • Menn FM, Applegate BM, Stayler GS (1993) NAH plasmid-mediated catabolism of anthracene and phenanthrene to naphthoic acid. Appl Environ Microbiol 59:1938–1942

    PubMed Central  CAS  PubMed  Google Scholar 

  • Meyer S, Moser R, Neef A, Stahl U, Kӓmpfer P (1999) Differential detection of key enzymes of polyaromatic-hydrocarbon-degrading bacteria using PCR and gene probes. Microbiology 145:1731–1741

    Article  CAS  PubMed  Google Scholar 

  • Moser R, Stahl U (2001) Insights into the genetic diversity of initial dioxygenases from PAH-degrading bacteria. Appl Microbiol Biotechnol 55:609–618

    Article  CAS  PubMed  Google Scholar 

  • Ohlendoff DH, Lipscomb JD, Weber PC (1988) Structure and assembly of protocatechuate 3, 4- dioxygenase. Nature 336:403–405

    Article  Google Scholar 

  • Parales RE, Parales JV, Gibson DT (1999) Aspartate 205 in the catalytic domain of naphthalene dioxygenase is essentical for activity. J Bacteriol 181:1831–1837

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pareek CS, Smoczynski R, Tretyn A (2011) Sequencing technologies and genome sequencing. J Appl Genet 52:413–435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Romero-Silva MJ, Méndez V, Agulló L, Seeger M (2013) Genomic and functional analyses of the gentisate and protocatechuate ring-cleavage pathways and related 3-hydroxybenzoate and 4-hydroxybenzoate peripheral pathways in Burkholderia xenovorans LB400. PLoS ONE 8, e56038

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sanseverino J, Applegate BM, King JMH, Sayler GS (1993) Plasmid-mediated mineralization of naphthalene, phenanthrene, and anthracene. Appl Environ Microbiol 59:1931–1937

    PubMed Central  CAS  PubMed  Google Scholar 

  • Seo JS, Keum YS, Harada RM, Li QX (2007) Isolation and characterization of bacteria capable of degrading polycyclic aromatic hydrocarbons (PAHs) and organophosphorus pesticides from PAH-contaminated soil in Hilo, Hawaii. J Agri Food Chem 55:5383–5389

    Article  CAS  Google Scholar 

  • Seo JS, Keum YS, Li QX (2009) Bacterial degradation of aromatic compounds. Int J Environ Res Public Health 6:278–309

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singleton DR, Ramirez LG, Aitken MD (2009) Characterization of a polycyclic aromatic hydrocarbon degradation gene cluster in a phenanthrene-degrading Acidovorax strain. Appl Environ Microbiol 75:2613–2620

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Strachan PD, Freer AA, Fewson CA (1998) Purification and characterization of catechol 1,2-dioxygenase from Rhodococcus rhodochrous NCIMB 13259 and cloning and sequencing of its catA gene. Biochem J 333:741–747

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takizawa N, Kaida N, Torigoe S, Moritani T, Sawada T, Satoh S, Kiyohara H (1994) Identification and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase and polycyclic aromatic hydrocarbon dihydrodiol dehydrogenase in Pseudomonas putida OUS82. J Bacteriol 176:2444–2449

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tay M, Roizman D, Cohen Y, Tolker-Nielsen T, Givskov M, Yang L (2014) Draft genome sequence of the model naphthalene-utilizing organism Pseudomonas putida ous82. Genome Announc 2:e01161–13

    Article  PubMed Central  PubMed  Google Scholar 

  • Uz I, Duan YP, Ogram A (2000) Characterization of the naphthalene-degrading bacterium, Rhodococcus opacus M213. FEMS Microbiol Lett 185:231–238

    Article  CAS  PubMed  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wolgel SA, Dege JE, Perkins-Olson PE, Jaurez-Garcia CH, Crawford RL, Münck E, Lipscomb JD (1993) Purification and characterization of protocatechuate 2, 3-dioxygenase from Bacillus macerans: a new extradiol catecholic dioxygenase. J Bacteriol 175:4414–4426

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yang Y, Chen RF, Shiaris MP (1994) Metabolism of naphthalene, fluorene, and phenanthrene: preliminary characterization of a cloned gene cluster from Pseudomonas putida NCIB 9816. J Bacteriol 176:2158–2164

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yu KSH, Wong AHY, Yau KWY, Wong YS, Tam NFY (2005) Natural attenuation, biostimulation and bioaugmentation on biodegradation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments. Mar Pollut Bull 51:1071–1077

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yun SH, Choi CW, Lee SY, Lee YG, Kwon J, Leem SH, Chung YH, Kahng HY, Kim SJ, Kwon KK, Kim SI (2014) Proteomic characterization of plasmid pLA1 for biodegradation of polycyclic aromatic hydrocarbons in the marine bacterium, Novosphingobium pentaromativorans US6-1. PLoS ONE 9, e90812

  • Zhang Y, Qin F, Qiao J, Li G, Shen C, Huang T, Hu Z (2012) Draft genome sequence of Rhodococcus sp. strain P14, a biodegrader of high-molecular-weight polycyclic aromatic hydrocarbons. J Bacteriol 194:3546

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang X, Huang Y, Harvey PR, Li H, Ren Y, Li J, Wang J, Yang H (2013) Isolation and characterization of carbendazim-degrading Rhodococcus erythropolis djl-11. PLoS ONE 8, e74810

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou HW, Guo CL, Wong YS, Tam NF (2006) Genetic diversity of dioxygenase genes in polycyclic aromatic hydrocarbon-degrading bacteria isolated from mangrove sediments. FEMS Microbiol Lett 262:148–157

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Fan ZT, Wu X, Jung KH, Ohman-Strickland P, Bonanno LJ, Lioy PJ (2011) Ambient concentrations and personal exposure to polycyclic aromatic hydrocarbons (PAH) in an urban community with mixed sources of air pollution. J Expo Sci Environ Epidemiol 21:437–449

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant no. 31200090) and the Natural Science Foundation of Shandong Province, China (grant no. ZR2010CQ017). We thank the School of Basic Medical Sciences, Zhejiang University, for providing the pET-30a (+) plasmid and E. coli BL21(DE3).

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zhang, C., Song, G. et al. Characterization of a protocatechuate catabolic gene cluster in Rhodococcus ruber OA1 involved in naphthalene degradation. Ann Microbiol 66, 469–478 (2016). https://doi.org/10.1007/s13213-015-1132-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-015-1132-z

Keywords

Navigation