Skip to main content
Log in

Fabrication and characteristics of anti-inflammatory magnesium hydroxide incorporated PLGA scaffolds formed with various porogen materials

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Poly(D,L-lactic-co-glycolic acid) (PLGA) has been widely used as a biodegradable polymer in the fabrication of porous polymer scaffolds, but it is hydrolyzed into acidic by-products such as glycolic acid and lactic acid in the human body. Magnesium hydroxide nanoparticles (Mg-NPs) were incorporated into a PLGA scaffold in order to neutralize the acidic environment caused by the hydrolysis of PLGA, thereby reducing the cytotoxicity and inflammatory response. In this study, three-dimensional porous scaffolds blended with 30% Mg-NP were fabricated using gas foaming (PLGA/Mg/NaHCO3), salt leaching (PLGA/Mg/NaCl), and freeze drying (PLGA/Mg/Ice), and their structures, morphologies, pH change, thermal properties, and mechanical properties were analyzed by Fourier transform infrared spectroscopy, scanning electron microscopy, pH meter, thermogravimetric analysis, and a universal testing machine. The porosity of the PLGA/Mg/Ice scaffold was higher at about 10-13 wt% than those of the PLGA/Mg/NaCl or PLGA/Mg/NaHCO3 scaffolds. The Mg-NP content of the PLGA/Mg/NaHCO3 scaffold remained lower than those of the other scaffolds at about 63%. As a result of this loss of Mg-NP, the PLGA/Mg/NaHCO3 scaffold was confirmed to have lower cell viability (about 70%) than the PLGA/Mg/Ice scaffold (about 100%), owing to the reduced neutralizing effect. Although the PLGA/Mg/Ice and PLGA/Mg/NaCl scaffolds showed similar cell viability, the NaCl of the PLGA/Mg/NaCl scaffold exhibited slight toxicity in the body. The expression level of interleukin-6 (IL-6) was significantly decreased in the PLGA/Mg/Ice scaffold than in the PLGA/Ice scaffold, but the PLGA/Mg/Ice scaffold exhibited an IL-6 expression level that was about 10% lower than that of the PLGA/Mg/ NaCl scaffold. Consequently, the addition of Mg-NP/Ice could conceivably reduce the expression level of IL-6 in PLGA scaffolds. This anti-inflammatory PLGA/Mg/Ice scaffold is therefore expected to show great promise when used as a template in tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Yang, G. Shi, J. Bei, S. Wang, Y. Cao, Q. Shang, G. Yang, and W. Wang, J. Biomed. Mater. Res., 62, 438 (2002).

    Article  CAS  Google Scholar 

  2. E. Sachlos and J. T. Czernuszka, Eur. Cells Mater., 5, 29 (2003).

    CAS  Google Scholar 

  3. Q. Lu, K. Ganesan, D. T. Simionescu, and N. R. Vyavahare, Biomaterials, 25, 5227 (2004).

    Article  CAS  Google Scholar 

  4. F. Zhang, C. He, L. Cao, W. Feng, and H. Wang, Int. J. Biol. Macromol., 48, 474 (2011).

    Article  CAS  Google Scholar 

  5. S. A. Park, S. H. Lee, and W. D. Kim, Bioprocess Biosyst. Eng., 34, 505 (2011).

    Article  Google Scholar 

  6. J. J. Yoon, J. H. Kim, and T. G. Park, Biomaterials, 24, 2323 (2003).

    Article  CAS  Google Scholar 

  7. D. W. Hutmacher, J. Biomater. Sci. Polym. Ed., 12, 107 (2001).

    Article  CAS  Google Scholar 

  8. H. Ghomi, M. H. Fathi, and H. Edris, J. Compos. Mater., 46, 1809 (2012).

    Article  Google Scholar 

  9. S. J. Kim, D. H. Yang, H. J. Chun, G. T. Chae, J. W. Jang, and Y. B. Shim, Macromol. Res., 21, 931 (2013).

    Article  CAS  Google Scholar 

  10. X. Xin, M. Hussain, and J. J. Mao, Biomaterials, 28, 316 (2007).

    Article  CAS  Google Scholar 

  11. C. J. Liao, C. F. Chen, J. H. Chen, S. F. Chiang, Y. J. Lin, and K. Y. Chang, J. Biomed. Mater. Res., 59, 676 (2002).

    Article  CAS  Google Scholar 

  12. Y. S. Nam and T. G. Park, J. Biomed. Mater. Res., 47, 8 (1999).

    Article  CAS  Google Scholar 

  13. S. Franz, S. Rammelt, D. Scharnweber, and J. C. Simon, Biomaterials, 32, 6692 (2011).

    Article  CAS  Google Scholar 

  14. S. J. Kim, Y. J. Lee, H. J. Park, D. H. Hong, G. S. Khang, and D. W. Lee, Macromol. Res., 22, 693 (2011).

    Google Scholar 

  15. W. W. Jiang, S. H. Su, R. C. Eberhart, and L. Tang, J. Biomed. Mater. Res., 82, 492 (2007).

    Article  Google Scholar 

  16. J. M. Anderson, A. Rodriguez, and D. T. Chang, Semin. Immunol., 20, 86 (2008).

    Article  CAS  Google Scholar 

  17. T. Hickey, D. Kreuzer, D. J. Burgess, and F. Moussy, Biomaterials, 23, 1649 (2002).

    Article  CAS  Google Scholar 

  18. M. G. Attur, R. Patel, G. Thakker, P. Vyas, D. Levartovsky, P. Patel, S. Naqvi, R. Raza, K. Patel, D. Abramson, G. Bruno, S. B. Abromson, and A. R. Amin, Inflamm. Res., 49, 20 (2000).

    Article  CAS  Google Scholar 

  19. C. H. Kum, Y. J. Cho, Y. K. Joung, J. Y. Choi, K. D. Park, S. H. Seo, Y. S. Park, D. J. Ahn, and D. K. Han, J. Mater. Chem. B, 1, 2764 (2013).

    Article  CAS  Google Scholar 

  20. H. H. Park and K. Y. Lee, Macromol. Res., 15, 238 (2007).

    Article  CAS  Google Scholar 

  21. C. Schugens, V. Maquet, C. Grandfils, R. Jerome, and P. Teyssie, J. Biomed. Mater. Res., 30, 449 (1996).

    Article  CAS  Google Scholar 

  22. D. J. Mooney, D. F. Baldwin, N. P. Suh, J. P. Vacanti, and R. Langer, Biomaterials, 17, 1417 (1996).

    Article  CAS  Google Scholar 

  23. G. Chen, T. Ushida, and T. Tateishim, Biomaterials, 22, 2563 (2001).

    Article  CAS  Google Scholar 

  24. A. Park, B. Wu, and L. G. Griffith, J. Biomater. Sci. Polym. Ed., 9, 89 (1998).

    Article  CAS  Google Scholar 

  25. L. D. Harris, B. S. Kim, and D. J. Mooney, J. Biomed. Mater. Res., 42, 396 (1998).

    Article  CAS  Google Scholar 

  26. Q. Hou, D. W. Grijpma, and J. Feijen, Biomaterials, 24, 1937 (2003).

    Article  CAS  Google Scholar 

  27. Xu, W. Lu, S. Bian, J. Liang, Y. Fan, and X. Zhang, Sci. World J., 10 (2012).

    Google Scholar 

  28. Y. S. Nam, J. J. Yoon, and T. G. Park. J. Biomed. Mater. Res., 53, 1 (2000).

    Article  CAS  Google Scholar 

  29. X. Chen, J. Yu, and S. Guo, J. Appl. Polym. Sci., 102, 4943 (2006).

    Article  CAS  Google Scholar 

  30. A. D. Li, Z. Z. Sun, M. Zhou, X. X. Xu, J. Y. Ma, W. Zheng, H. M. Zhou, L. Li, and Y. F. Zheng, Colloids Surf. B: Biointerfaces, 102, 674 (2013).

    Article  CAS  Google Scholar 

  31. P. J. Anderson and R. F. Horlock, J. Chem. Soc. Faraday Trans., 58, 1962 (2004).

    Google Scholar 

  32. C. C. Chen and A. M. Manning, Cytokine, 8, 58 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tae Il Son or Dong Keun Han.

Additional information

The image from this article is used as the cover image of the Volume 22, Issue 2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, H.W., Seo, S.H., Kum, C.H. et al. Fabrication and characteristics of anti-inflammatory magnesium hydroxide incorporated PLGA scaffolds formed with various porogen materials. Macromol. Res. 22, 210–218 (2014). https://doi.org/10.1007/s13233-014-2040-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-014-2040-y

Keywords

Navigation