Skip to main content
Log in

Synthesis of 1-acryloyl-3-phenyl thiourea based pH sensitive hydrogels for removal of samarium and terbium

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

This paper describes the synthesis of a new chelating poly(acrylamide-co-dimethylaminoethyl methacrylate-co-1-acryloyl-3-phenyl thiourea) (PAPDM) hydrogel. The PAPDM hydrogels were prepared by the simple free radical polymerization of monomers acrylamide, dimethylamino ethyl methacrylate and 1-acryloyl-3-phenyl thiourea. The free radical initiator used for this study was ammonium persulphate and the cross-linker was ethylene glycol di methacrylate. The swelling study of the PAPDM hydrogels were performed in the aqueous environment to calculate the morphological parameters, such as the volume fraction in a swollen gel (v 2m ), polymer-solvent interaction parameter (χ) and molecular weight between the crosslinks (M c ). These hydrogels were characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry and scanning electron microscopy. Further these chelating hydrogels were investigated for the removal of rare earth metal ions (samarium and terbium) from aqueous environments by varying the adsorption time, adsorbate concentration and monomer ratio. The adsorption time data for samarium and terbium were fitted to two simple kinetic models, pseudo-first and pseudo-second-order, and tested to examine the adsorption mechanisms. The kinetic parameters were calculated. The equilibrium data was fitted well to the Langmuir and Freundlich models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Humphries, Rare Earth Element, Global Supply Chain, Congressional Research Service, 2013. pp 1–3.

    Google Scholar 

  2. J. C. Laul, J. Radioanal. Nucl. Chem., 156, 235 (1992).

    Article  CAS  Google Scholar 

  3. G. E. Fryxell, H. Wu, Y. Lin, W. J. Shaw, J. C. Birnbaum, J. C. Linehan, Z. Nie, K. Ken, and S. Kelly, J. Mater. Chem., 14, 3356 (2004).

    Article  CAS  Google Scholar 

  4. A. Zhang, E. Kuraoka, and M. Kumagai, Eur. Polym. J., 43, 529 (2007).

    Article  CAS  Google Scholar 

  5. K. K. Yadav, D. K. Singh, M. Anitha, L. Varshney, and H. Singh, Sep. Purif. Technol., 118, 350 (2013).

    Article  CAS  Google Scholar 

  6. J. Roosen and K. Binnemans, J. Mater. Chem. A, 2, 1530 (2014).

    Article  CAS  Google Scholar 

  7. L. Wang, X. Huang, Y. Yu, and Z. Long, Sep. Purif. Technol., 122, 490 (2014).

    Article  CAS  Google Scholar 

  8. V. K. Jain, A. Handa, S. S. Sait, P. Shrivastav, and Y. K. Agarval, Anal. Chim. Acta, 429, 237(2001).

    Article  CAS  Google Scholar 

  9. T.-L. Ho, Chem. Rev., 75, 1 (1975).

    Article  CAS  Google Scholar 

  10. J. Soedarsono, A. Hagege, M. Burgard, Z. Asfari, and J. Vicens, Ber. Bunsenges. Phys. Chem., 100, 477 (1996).

    Article  CAS  Google Scholar 

  11. H. Mukai, S. Miyazaki, S. Umetani, S. Kihara, and M. Matsui, Anal. Chim. Acta, 220, 111 (1989).

    Article  CAS  Google Scholar 

  12. M. L. P. Reddy, J. R. B. Bharathi, S. Peter, and T. R. Ramamohan, Talanta, 50, 79 (1999).

    Article  CAS  Google Scholar 

  13. K. S. V. Krishna Rao, B. V. K. Naidu, M. C. S. Subha, and T. M. Aminabhavi, Carbohydr. Polym., 66, 333 (2006).

    Article  Google Scholar 

  14. K. S. V. Krishna Rao and C.-S. Ha, Polym. Bull., 62, 167 (2009).

    Article  Google Scholar 

  15. T. J. Sudha Vani, N. Sivagangi Reddy, and K. S. V. Krishna Rao, Indian J. Adv. Chem. Sci., 2, 110 (2014).

    Google Scholar 

  16. A. Denizli, R. Say, S. Patir, and Y. Arica, Sep. Sci. Technol., 36, 2213 (2001).

    Article  CAS  Google Scholar 

  17. B. L. Rivas, B. Quilodra, and E. Quiroz, J. Appl. Polym. Sci., 88, 2614 (2003).

    Article  CAS  Google Scholar 

  18. J. Hendri, A. Hiroki, Y. Maekawa, M. Yoshida, and R. Katakai, Radiat. Phys. Chem., 60, 617 (2001).

    Article  CAS  Google Scholar 

  19. H. Bessbousse, T. Rhlalou, J.-F. Verchere, and L. Lebrun, J. Membrane. Sci., 307, 249 (2008).

    Article  CAS  Google Scholar 

  20. J. Ramkumar, B. Maiti, and T. S. Krishnamoorthy, J. Membr. Sci., 125, 269 (1997).

    Article  CAS  Google Scholar 

  21. S. Doker, S. Malci, M. Dogan, and B. Salih, Anal. Chim. Acta, 553, 73(2005).

    Article  Google Scholar 

  22. S. Doker, O. Çelikbicak, M. Dogan, and B. Salih, Microchem. J., 84, 80 (2006).

    Article  Google Scholar 

  23. L. Wang, R. Xing, S. Liu, H. Yu, Y. Qin, K. Li, J. Feng, R. Li, and P. Li, J. Hazard. Mater., 180, 577 (2010).

    Article  CAS  Google Scholar 

  24. M. Merdian, M. Z. Duz, and C. Hamamci, Talanta, 16, 639 (2001).

    Article  Google Scholar 

  25. A. T. Mubarak and A. Z. El-Sonbati, Polym. Bull., 57, 683 (2006).

    Article  CAS  Google Scholar 

  26. L. Zhao, J. Sun, Y. Zhao, L. Xu, and M. Zhai, Chem. Eng. J., 170, 162 (2011).

    Article  CAS  Google Scholar 

  27. Z.-Y. Kong, J.-F. Wei, Y.-H. Lia, N.-N. Liu, H. Zhang, Y. Zhang, and L. Cuia, Chem. Eng. J., 254, 365 (2014).

    Article  CAS  Google Scholar 

  28. M. Liu, F. Bian, and F. Sheng, Eur. Polym. J., 41, 283 (2005).

    Article  CAS  Google Scholar 

  29. D. P. Drolet, D. M. Manuta, A. J. Lees, A. D. Katnani, and G. J. Coyle, Inorg. Chim. Acta, 146, 173 (1988).

    Article  CAS  Google Scholar 

  30. P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, 1953.

    Google Scholar 

  31. J. E. Mark and B. Erman, Rubberlike Elasticity: A Molecular Primer, Wiley, New York, 1988.

    Google Scholar 

  32. W. Xue, S. Champ, and M. B. Huglin, Polymer, 42, 3665 (2001).

    Article  CAS  Google Scholar 

  33. S. Lagergren, in Zur Theorie der sogenannten Adsorption gelöster Stoffe, Kungliga Sveska Vetenskapskadomiens Handl, 1898, 24, pp 1–39.

    Google Scholar 

  34. N. S. Reddy, K. M. Rao, T. J. S. Vani, K. S. V. K. Rao, and Y. I. Lee, Desalination Water Treat., 57, 6503 (2015).

    Article  Google Scholar 

  35. T. J. S. Vani, N. S. Reddy, K. S. V. K. Rao, and P. S. Rao, Desalination Water Treat., doi: 10.1080/19443994.2016.1151380 (2016).

    Google Scholar 

  36. G. Blanchard, M. Maunaye, and G. Martin, Water Res., 18, 1501 (1984).

    Article  CAS  Google Scholar 

  37. E. Repo, J. K. Warchol, T. A. Kurniawan, and M. E. T. Sillanpaa, Chem. Eng. J., 161, 73 (2010).

    Article  CAS  Google Scholar 

  38. M. S. Chiou and H. Y. Li, Chemosphere, 50, 1095 (2003).

    Article  CAS  Google Scholar 

  39. I. Langmuir, J. Am. Chem. Soc., 38, 2221 (1916).

    Article  CAS  Google Scholar 

  40. H. M. F. Freundlich, J. Phys. Chem., 57, 385 (1906).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kummari Subba Venkata Krishna Rao or Chang-Sik Ha.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, N.S.G., Rao, K.M., Rao, K.S.V.K. et al. Synthesis of 1-acryloyl-3-phenyl thiourea based pH sensitive hydrogels for removal of samarium and terbium. Macromol. Res. 24, 494–501 (2016). https://doi.org/10.1007/s13233-016-4068-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-016-4068-7

Keywords

Navigation