Skip to main content
Log in

Study of polyethylene glycol-fluorophore complex formation by fluorescence correlation spectroscopy

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Fluorescent labelling and detection has become a powerful tool in many life sciences applications. Fluorescently-tagged molecules are reliably demarcated from their surroundings allowing for the interrogation of various structural or dynamic molecular or system properties. For reliable data acquisition or to harvest the potential of noncovalent labelling, it is important that there is a good understanding of potential interactions between the fluorophore and the environment. Here, for the first time we report a complexation between Atto fluorophores and a polyethylene glycol (PEG) polymer. Atto fluorophores have long life times, high quantum yield and high sensitivity and are thus utilized in applications such as live cell imaging, spectroscopy and super resolution microscopy. PEG, on the other hand, is one of the most widely utilized polymers in many biomedical fields such as drug delivery and tissue engineering. Here, we used fluorescence correlation spectroscopy to study the specificity and the mechanism of the complexation. We determined that it was specific to the fluorophore-polymer-solvent system studied and that it was caused by a hydrogen bonding between the carboxyl group of the Atto fluorophores and the ether oxygen of PEG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Kinoshita, F. Iinuma, and A. Tsuji, Anal. Biochem., 61, 632 (1974).

    Article  CAS  Google Scholar 

  2. M. Modesti, in Single Molecule Analysis: Methods and Protocols, Humana Press, New York, 2011, p 101.

    Book  Google Scholar 

  3. Y. Kawahashi, N. Doi, H. Takashima, C. Tsuda, Y. Oishi, R. Oyama, M. Yonezawa, E. Miyamoto-Sato, and H. Yanagawa, Proteomics, 3, 1236 (2003).

    Article  CAS  Google Scholar 

  4. C. V. Sapan, R. L. Lundblad, and N. C. Price, Biotechnol. Appl. Biochem., 29, 99 (1999).

    CAS  Google Scholar 

  5. H. Kobayashi, M. Ogawa, R. Alford, P. L. Choyke, and Y. Urano, Chem. Rev., 110, 2620 (2009).

    Article  Google Scholar 

  6. H. Zhang, X. Zhu, Y. Wu, H. Song, and X. Ba, J. Mater. Sci., 50, 4387 (2015).

    Article  CAS  Google Scholar 

  7. H. Zhang, T. Ren, Y. Ji, L. Han, Y. Wu, H. Song, L. Bai and X. Ba, ACS Appl. Mater. Interfaces, 7, 23805 (2015).

    Article  CAS  Google Scholar 

  8. P. P. Ghoroghchian, P. R. Frail, G. Li, J. A. Zupancich, F. S. Bates, D. A. Hammer, and M. J. Therien, Chem. Mater., 19, 1309 (2007).

    Article  CAS  Google Scholar 

  9. N. DiCesare and J. R. Lakowicz, J. Phys. Chem. A, 105, 6834 (2001).

    Article  CAS  Google Scholar 

  10. H. Ihmels and D. Otto, in Topics in Current Chemistry: Supramolecular Dye Chemistry, Springer, Barlin, 2005, Vol. 258, pp 161–204.

    Article  CAS  Google Scholar 

  11. M. Inyang, B. Gao, A. Zimmerman, M. Zhang, and H. Chen, Chem. Eng. J., 236, 39 (2014).

    Article  CAS  Google Scholar 

  12. M. M. Kurfürst, Anal. Biochem., 200, 244 (1992).

    Article  Google Scholar 

  13. S. P. Zustiak, D. Ferguson, R. Nossal, and D. Sackett, AIChE Symposia Proceedings, Pittsburg, 2012.

    Google Scholar 

  14. S. van de Linde, M. Heilemann, and M. Sauer, Ann. Rev. Phys. Chem., 63, 519 (2012).

    Article  Google Scholar 

  15. J. M. Harris, Poly(ethylene glycol) Chemistry: Biotechnical and Biomedical Applications, Springer Science & Business Media, New York, 2013.

    Google Scholar 

  16. W. Ji and L. Shengdong, PROGRESS IN BIOTECHNOLOGY, 04 (1995).

    Google Scholar 

  17. W.-G. Koh, A. Revzin, and M. V. Pishko, Langmuir, 18, 2459 (2002).

    Article  CAS  Google Scholar 

  18. S. P. Zustiak, S. Pubill, A. Ribeiro, and J. B. Leach, Biotechnol. Prog., 29, 1255 (2013).

    Article  CAS  Google Scholar 

  19. H. Ma, J. Hyun, P. Stiller, and A. Chilkoti, Adv. Mater., 16, 338 (2004).

    Article  CAS  Google Scholar 

  20. S. P. Zustiak, H. Boukari, and J. B. Leach, Soft Matter, 6, 3609 (2010).

    Article  CAS  Google Scholar 

  21. S. Petrova, Y. Kostov, K. Jeffris, and G. Rao, Anal. Lett., 40, 715 (2007).

    Article  CAS  Google Scholar 

  22. H. T. Oyama, W. T. Tang, and C. W. Frank, Macromolecules, 20, 474 (1987).

    Article  CAS  Google Scholar 

  23. P. Donovan, Y. Chehreghanianzabi, M Rathinam, and S. P. Zustiak, PloS One, 11 (2016).

  24. S. P. Zustiak, R. Nossal, and D. L. Sackett, Biophys. J., 101, 255 (2011).

    Article  CAS  Google Scholar 

  25. D. Magde, E. L. Elson, and W. W. Webb, Biopolymers, 13, 29 (1974).

    Article  CAS  Google Scholar 

  26. E. L. Elson and D. Magde, Biopolymers, 13, 1 (1974).

    Article  CAS  Google Scholar 

  27. S. U. Li and J. L. Gainer, Ind. Eng. Chem. Fundam., 7, 433 (1968).

    Article  CAS  Google Scholar 

  28. T. Cherdhirankorn, A. Best, K. Koynov, K. Peneva, K. Muellen, and G. Fytas, J. Phys. Chem. B, 113, 3355 (2009).

    Article  CAS  Google Scholar 

  29. S. P. Zustiak, S. Dadhwal, C. Medina, S. Steczina, Y. Chehreghanianzabi, A. Ashraf, and P. Asuri, Biotechnol. Bioeng., 113, 443 (2016).

    Article  CAS  Google Scholar 

  30. K. Y. Lee and D. J. Mooney, Prog. Polym. Sci., 37, 106 (2012).

    Article  CAS  Google Scholar 

  31. S. M. Tadavarthy, J. H. Moller, and K. Amplatz, Am. J. Roentgenol., 125, 609 (1975).

    Article  CAS  Google Scholar 

  32. H. Yue, Y. Zhao, X. Ma, and J. Gong, Chem. Soc. Rev., 41, 4218 (2012).

    Article  CAS  Google Scholar 

  33. R. Cheng, Y. Yang, and X. Yan, Polymer, 40, 3773 (1999).

    Article  CAS  Google Scholar 

  34. D. F. Othmer and M. S. Thakar, Ind. Eng. Chem., 45, 589 (1953).

    Article  CAS  Google Scholar 

  35. K. A. Sharp, Proc. Natl. Acad. Sci., 112, 7990 (2015).

    Article  CAS  Google Scholar 

  36. K. Smith, A. Winslow, and D. Petersen, Ind. Eng. Chem., 51, 1361 (1959).

    Article  CAS  Google Scholar 

  37. L. Bimendina, V. Roganov, and E. Bekturov, J. Polym. Sci., Polym. Symp., 44, 65 (1974).

    Article  CAS  Google Scholar 

  38. P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J. T. Warren, H. Bokesch, S. Kenney, and M. R. Boyd, J. Natl. Cancer Inst., 82, 1107 (1990).

    Article  CAS  Google Scholar 

  39. D. Dhara and P. R. Chatterji, J. Phys. Chem. B, 103, 8458 (1999).

    Article  CAS  Google Scholar 

  40. Q.-Y. Chen, D.-H. Li, H.-H. Yang, Q.-Z. Zhu, J.-G. Xu, and Y. Zhao, Analyst, 124, 901 (1999).

    Article  CAS  Google Scholar 

  41. S. H. Lee, J. K. Suh, and M. Li, Bull. Korean Chem. Soc., 24, 45 (2003).

    Article  CAS  Google Scholar 

  42. C. B. Müller, A. Loman, V. Pacheco, F. Koberling, D. Willbold, W. Richtering, and J. Enderlein, EPL (Europhysics Letters), 83, 46001 (2008).

    Article  Google Scholar 

  43. C. B. Müller, A. Loman. W. Richtering, and J. Enderlein, J. Phys. Chem. B, 112, 8236 (2008).

    Article  Google Scholar 

  44. C. Röcker, M. Pötzl, F. Zhang, W. J. Parak, and G. U. Nienhaus, Nat. Nanotechnol., 4, 577 (2009).

    Article  Google Scholar 

  45. R. G. Mortimer, Mathematics for Physical Chemistry, Academic Press, San Diego, 1999.

    Google Scholar 

  46. Y. Yaguchi, T. Yu, M. U. Ahmed, M. Berry, I. Mason, and M. A. Basson, Dev. Dyn., 238, 2058 (2009).

    Article  CAS  Google Scholar 

  47. M. A. Cremasco and L. N.-H. Wang, Acta Scientiarum. Technol., 34, 33 (2011).

    Google Scholar 

  48. K. L. Linegar, A. E. Adeniran, A. F. Kostki, and M. A. Anisimov, Colloid J., 72, 279 (2010).

    Article  CAS  Google Scholar 

  49. B. Wang, S. Mukataka, M. Kodama, and E. Kokufuta, Langmuir, 13, 6108 (1997).

    Article  CAS  Google Scholar 

  50. C.-S. Wu, Handbook of Size Exclusion Chromatography and Related Techniques: Revised And Expanded, Marcel Dekker, Inc., New York, 2003.

    Book  Google Scholar 

  51. J. G. De Nobel, C. Dijkers, E. Hooijberg, and F. M. Klis, J. General Microbiol., 135, 2077 (1989).

    Google Scholar 

  52. G. Fundueanu, C. Nastruzzi, A. Carpov, J. Desbrieres, and M. Rinaudo, Biomaterials, 20, 1427 (1999).

    Article  CAS  Google Scholar 

  53. R. Borsali and R. Pecora, Soft-Matter Characterization, Springer Science & Business Media, 2008.

    Book  Google Scholar 

  54. B. T. Stokke, K. I. Draget, O. Smidsrød, Y. Yuguchi, H. Urakawa, and K. Kajiwara, Macromolecules, 33, 1853 (2000).

    Article  CAS  Google Scholar 

  55. A. S. Zeiger, F. C. Loe, R. Li, M. Raghunath, and K. J. Van Vliet, PloS One, 7, e37904 (2012).

    Article  CAS  Google Scholar 

  56. S. Holder, Polym. Int., 54, 615 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silviya Petrova Zustiak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chehreghanianzabi, Y., Zustiak, S.P. Study of polyethylene glycol-fluorophore complex formation by fluorescence correlation spectroscopy. Macromol. Res. 24, 995–1002 (2016). https://doi.org/10.1007/s13233-016-4142-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-016-4142-1

Keywords

Navigation